Приведение к точке плоской системы произвольно расположенных сил


 

Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему сле­дует упростить. Для этого все силы системы переносят в одну произ­вольно выбранную точку — точку приведения. Применяют теорему Пуансо. При любом переносе силы в точку, не лежащую на линии ее действия, добавляют пару сил.

Появившиеся при переносе пары называют присоединенными па­рами.

 
 

Дана плоская система произвольно расположенных сил (рис. 5.2).

 

Переносим все силы в точку О. Получим пучок сил в точке О, который можно заменить одной силой — главным вектором систе­мы.

 
 

Образующуюся систему пар сил можно заменить одной эквива­лентной парой — главным моментом системы.

 
 

Главный вектор равен геометрической сумме векторов произ­вольной плоской системы сил. Проецируем все силы системы на оси координат и, сложив соответствующие проекции на оси, получим проекции главного вектора.

По величине проекций главного вектора на оси координат нахо­дим модуль главного вектора:

Главный момент системы сил равен алгебраической сумме мо­ментов сил системы относительно точки приведения.

Таким образом, произвольная плоская система сил приводится к одной силе (главному вектору системы сил) и одному моменту (главному моменту системы сил).

Условие равновесия произвольной плоской системы сил может быть сформулировано следующим образом:

Для того чтобы твердое тело под действием произвольной плоской системы сил находилось в равновесии, необходимо и доста­точно, чтобы алгебраическая сумма проекций всех сил системы на любую ось относительно любой точки в плоскости действия сил равнялась нулю.

Получим основную форму уравнения равновесия:

 

Теоретически уравнений моментов можно записать бесконечное множество, но практически доказано, что на плоскости можно соста­вить только три независимых уравнения моментов и при этом три точки (центры моментов) не должны лежать на одной линии.



Дата добавления: 2017-09-01; просмотров: 3500;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.