Условия равновесия плоской системы сходящихся сил в аналитической форме


 

 
 

Исходя из того, что равнодействующая равна нулю, получим:

Условия равновесия в аналитической форме можно сформули­ровать следующим образом:

Плоская система сходящихся сил находится в равновесии, ес­ли алгебраическая сумма проекций всех сил системы на любую ось равна нулю.

Система уравнений равновесия плоской сходящейся системы сил:

 
 

В задачах координатные оси выбирают так, чтобы решение было наиболее простым. Желательно, чтобы хотя бы одна неизвестная сила совпадала с осью координат.

Примеры решения задач

 

Пример 1. Определить величины и знаки проекций представленных на рис. 3.6 сил.

 
 

Решение

Пример 2. Определить величину и направление равнодействующей плоской системы сходящихся сил аналитическим способом.

Решение

1.
 
 

Определяем проекции всех сил системы на Ох (рис. 3.7, а):

 

Сложив алгебраически проекции, получим проекцию равнодействующей на ось Ох.

 
 

Fx = 8,66 – 20 + 10,6 = - 0,735 кН

 

Знак говорит о том, что равнодействующая направлен влево.

2.
 
 

Определяем проекции всех сил на ось Оу значения проекций, получим величину проекции Оу.

 

Сложив алгебраически значения проек­ций, получим величину проекции равнодей­ствующей на ось Оу.

 
 

Знак проекции соответствует на­правлению вниз. Следовательно, равно­действующая направлена влево и вниз (рис. 3.7б).

 

3. Определяем модуль равнодействую­щей по величинам проекций:

 
 

 
 

4. Определяем значение угла равнодействующей с осью Ох:

 
 

и значение угла с осью Оу:

 

Пример 3. Система трех сил находится в равновесии. Известны проекции двух сил системы на взаимно перпендикулярные оси Ох и )у:

Flx = 10 кН; F2x = 5 кН;

F1y = - 2 кН; F2y = 6 кН.

Определить, чему равна и как направлена третья сила системы.

Решение

 

 
 

1. Из уравнений равновесия системы определяем:

2.
 
 

По полученным величинам проекций определяем модуль силы:

 
 

Направление вектора силы относитель­но оси Ох (рис. 3.8):

Угол с осью Ох будет равен

 
 

Пример 4. Определить величину и направление реакций свя­зей для схемы, приведенной на рисунке, а под действием груза G = 30 кН. Проверить правильность определения реакций.

Решение

1. В задаче рассматривается равновесие тела, опи­рающегося на плоскость и подвешенного на нити. Заменим тело точкой 0, совпадающей с центром тяжести.

2. Приложим к точке 0 активную силу, которой является соб­ственный вес тела G. Направим ее вниз (рис. б).

 

3. Мысленно отбросим связи — плоскость и нить. Заменим их действие на точку 0 реакциями связей. Реакция плоскости (обо­значим ее R) проходит по нормали к плоскости в точке А, а ре­акция или усилие в нити (обозначим ее S) — по нити от точки. Обе реакции и вес тела или линии их действия должны пересе­каться в точке 0.

Изобразим действующие силы в виде системы трех сходя­щихся сил на отдельном чертеже (рис. в).

 

4. Выберем положение системы координат. Начало координат совмещаем с точкой 0. Ось х совмещаем с направлением линии действия реакции R, а ось у направим перпендикулярно оси х (рис. г). Определим углы между осями координат и реакциями R и S. Обычно рис. б и в не выполняют отдельно, а сразу от рис. а переходят к рис. г. Можно было ось у совместить с усилием S, и ось х направить по углом 90°, тогда решение было бы другим.

 

5. Составим сумму проекций всех сил на оси координат:

Решим систему уравнений. Из второго уравнения находим

Из первого уравнения находим

 

6.Проверим решение, для чего расположим оси координат, как показано на рис. д. Составим уравнения равновесия для вновь принятых осей:

Решим систему уравнений способом подстановки.

Из первого уравнения найдем R:

Подставим это выражение во второе уравнение:

 

Очевидно, что при расположении осей, как показано на рис. д, вычисления оказались более сложными.

Ответ: R = 11,84 кН; S = 22,21 кН.

 

Пример 5. Определить усилия в нити и стержне кронштейна, показанного на рис. а, если G = 20 кН.

Решение

1. Рассмотрим равновесие точки А (или узла А), в которой сходятся все стержни и нити.

2. Активной силой является вес груза G, направленный вниз (рис. б).

3. Отбросим связи: стержень и нить. Усилие в нити обозна­чим Sx и направим от точки А, так как нить может испытывать только растяжение. Усилие в стержне обозначим S2 и тоже на­правим от точки А, предполагая что стержень АС растянут (рис. б).

Выполним на отдельном чертеже схему действия сил в точке А (рис. в).

4. Выберем положение системы координат. Начало коорди­нат совмещаем с точкой А (рис. г). Ось х совмещаем с лини­ей действия усилия S, а ось у располагаем перпендикулярно оси х. Укажем углы между осями координат и усилиями S1S2.

5. Составим уравнения равновесия.

Из второго уравнения находим

Из первого уравнения находим

Знак «минус» перед S2 свидетельствует о том, что стержень АС не растянут, как предполагалось, а сжат.

 

6. Проверку решения предлагаем выполнить самостоятельно, расположив оси координат так, как показано на рис. д.

Ответ: S1 = 15,56 кН, S2 = - 29,24 кН (при принятом на черте­же направлении усилий).

Величина усилий зависит от углов наклона стержня и нити. Например, если на рис. а угол 70° заменить на 60°, сохранив угол 30°, то усилия будут равны: S1= 20 кН, S2 = - 34,64 кН. А при угле 50° S1 = 29,26 кН, S2 = - 44,8 кН. Оба усилия растут и становятся больше веса груза.

Пример 6. Как изменятся усилия в стержне и нити, если груз будет перекинут через блок, как показано на рис. а?

Остальные данные — в примере 5.

Решение

1. Рассматриваемой тонкой остается точка А.

2. Активная сила (вес груза G) действует на точку горизонтально слева направо, так как груз перекинут через блок.

3. Усилия S1 и S2 прикладываем к точке А, как в примере 2.

4. Выбираем систему координат, как показано на рис. б.

 
 

5. Составляем и решаем уравнения равновесия:

 
 

Из первого уравнения находим

 
 

Из второго уравнения находим

 

Ответ: S1 = 26,94 кН; S2 = - 10,64 кН при принятом направлении усилий на чертеже. Усилие S1 увеличилось, S2 — уменьшилось, а знаки не изменились.

Пример 7. Определить усилия в стержнях (рис. а). Массой стержней пренебречь.

Решение

В соответствии с последовательностью действий, будем рассматривать равновесие узла А к которому приложены заданные нагрузки (Р, 2Р, 3Р) и искомые реакции стержней АВ и АС.

Освободим узел А от связей, заменим их действие искомыми реакциями NАС, NAB(рис. в). Получили плоскую систему сходящихся сил.

Выбираем систему координат (рис. г).

Сила NAB перпендикулярна оси v, сила NАС — оси и; поэтому в каждое уравнение равновесия войдет лишь одна неизвестная сила:

 
 

Силы NAB и NАС получились положительными; это значит, что предполагаемые направления сил совпадают с действительными.

На рис. д показаны силы, действующие на узел (реакции стержней), и силы, действующие на стержни (усилия в стержнях или реакции узла).

Решим тот же пример графическим методом.

Полученная система сил (см. рис. в) находится в равновесии, и, следовательно, силовой многоугольник, построенный для этой системы сил, должен быть замкнутым.

Строим силовой многоугольник. Выбираем масштаб (рис. е). От точки О (рис. ж) в выбранном масштабе откладываем сначала силу Р, затем от конца вектора Р — силу 2Р, после чего от конца вектора 2Р — силу ЗР. Масштаб следует выбрать достаточно крупный, с тем чтобы при измерении отрезков (векторов), изображающих искомые силы, можно было получить их значения без большой погрешности. Через точку b проводим линию, параллельную стержню АС, и через точку О — линию, параллельную стержню АВ. Отрезки ОС и CB представляют собой искомые усилия. Направления задан­ных сил известны; стрелки, изображающие направления искомых сил, ставим таким образом, чтобы в векторном многоугольнике было единое на­правление обхода — в данном случае против часовой стрелки. Измерив отрезки к и Ос в со­ответствии с выбранным мас­штабом, находим абсолютные величины реакций; NAcza\,2P\ Nab~4,2P.

Решение примера выполнено двумя способами, которые (в пределах точности построений) дали совпадающие результаты. Очевидно, здесь никакой допол­нительной проверки решения не требуется.

Пример 8. Определить предельное значение угла а, при котором груз А (рис. а) будет находиться в по­кое. Плоскость ВС считать абсолютно гладкой.

Решение

Силы, действующие на груз А, представляют собой плоскую систему сходящихся сил. NBC — реакция наклонной плоскости.

Если груз А находится в покое, то ∑Pto = 0, т.е.

 


Контрольные вопросы и задания

1. Запишите выражение для расчета проекции силы F на ось Оу (рис. 3.9).

 

2. Определите сумму проекций сил системы на ось Ох (рис. 3.10).

 

 

4. Определите величину силы по известным проекциям:

Fx = 3 кН; Fy = 4 кН.

 

5.
 
 

Груз находится в равновесии (рис. 3.11). Какая система урав­нений равновесия для шарнира А записана верно?

 

Указания.

1. При ответе на вопросы 1 и 2 необходимо знать, что в выраже­ние для величины проекции силы на ось подставляется угол между вектором силы и положительной полуосью координат. Не забыть, что определяется алгебраическая сумма.

2. При ответе на вопрос 4 сначала следует определить возмож­ные направления реакций в стержнях, мысленно убирая по очереди стержни и рассматривая возможные перемещения (см. лекцию 1).

Затем записать алгебраические суммы проекций сил на оси Ох и Оу. Полученные уравнения сравнить с приведенными.

 

 

5. Ответьте на вопросы тестового задания.

 




Дата добавления: 2017-09-01; просмотров: 19200;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.025 сек.