Произведение матриц.


Операция произведения определяется не для всех матриц, а лишь для согласованных.

Матрицы А и В называются согласованными, если число столбцов матрицы А равно числу строк матрицы В. Так, если , , m≠k, то матрицы А и В согласованные, так как n = n, а в обратном порядке матрицы В и А несогласованные, так как m ≠ k. Квадратные матрицы согласованы, когда у них одинаковый порядок n, причем согласованы как А и В, так и В и А. Если , а , то будут согласованы матрицы А и В, а также матрицы В и А, так как n = n, m = m.

Произведением двух согласованных матриц и

А= , В=

 

называется матрица С порядка m´k:

= , элементы которой вычисляются по формуле:

 

( 1, 2, 3, …, m , j=1, 2, 3, …, k),

то есть элемент i –ой строки и j –го столбца матрицы С равен сумме произведений всех элементов i –ой строки матрицы А на соответствующие элементы j –го столбца матрицы В.

Пример.Найти произведение матриц А и В.

 

= , = ,

= = = .

Произведение матриц В∙А не существует, так как матрицы В и А не согласованы: матрица В имеет порядок 2´2, а матрица А – порядок 3´2.

Для любых квадратных матриц единичная матрица Е является коммутирующей к любой матрице А того же порядка, причем в результате получим ту же матрицу А, то есть АЕ = ЕА = А.



Дата добавления: 2021-09-07; просмотров: 266;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.