Воспроизведение звука


 

Современноые средства мультимедиа дают качество стереозвука, удовлетворяющее самым придирчивым требованиям HiFi (сокращенно это означает высокую верность воспроизведения). Современные платы синтеза звука способны синтезировать звучание одновременно 20 и более музыкальных инструментов, создавая при этом множество специальных звуковых эффектов - плавное изменение громкости каждого инструмента, вибрацию звуков, их модуляцию по частоте и т.д. Появилась возможность записи звуковых сигналов на магнитные носители ПК в виде файлов и их сложной математической обработки - например наложения сигналов, фильтрации шумов и т.д.

Сейчас HiFi-звучание неразрывно связано с лазерными аудиодисками (или компакт-дисками CD), использующими цифровые методы кодирования звуковых сигналов. Диск представляет из себя пластмассовый кружок, на поверхности которого имеются микроскопические углубления, созданные записывающим устройством (точнее говоря, технологическим процессом тиражирования дисков с некоторого оригинала). Они покрыты "толстым" слоем прозрачного лака, предохраняющим поверхность диска от повреждений. Рабочей является только одна поверхность, вторая используется для красочной маркировки.

Для проигрывания диска используется полупроводниковый лазерный диод с фокусирующей оптической системой. Область диска под лаком с микроуглублениями находится в фокусе, и отраженный от нее сигнал воспринимается фотодиодом, расположенным рядом с лазерным излучателем. Диск вращается с переменной скоростью, что дает постоянную линейную скорость считывания данных. Наружняя поверхность диска находится не в фокусе. Поэтому ее загрязнения и даже царапины практически не влияют на воспроизведение. Тем более что специальная электронная система коррекции ошибок устраняет их проникновение в данные. Тряска, вибрация и магнитные поля - бичь граммофонных проигрывателей и магнитофонов - на работу дисковых проигрывателей практически не влияют.

Сигнал фотодиода имеет форму импульсов. Для работы прогрывателя важно лишь наличие или отсутствие импульса - т.е. логический 0 или 1. Ну прямо как в компьтере, скажете вы и будете правы. Оптический диск как бы идеально подходит для создания ПЗУ (ROM) компьютера с огромной емкостью. Но история распорядилась по иному - такой диск был вначале задуман как средство цифровой записи звука для обычных целей HiFi- звуковоспроизведения. И лишь в начале 90-х годов он стал использоваться для записи компьютерных данных и программ в связи с практической реализацией идей мультимедиа.

В основе цифровой записи лежит представление мгновенного значения звукового сигнала его численным значением. Оно дискретное, т.е. выражается целым числом. Звуковой сигнал обычно имеет аналоговое (непрерывное) представление. И чтобы представить его в числовой форме, надо провести дискретизацию сигнала, представив его конечным числом уровней. Для HiFi-звуковоспроизведения в первом приближении хватает 65536 ступенек цифрового представления мгновенного значения цифрового сигнала. Это означает, что достаточно иметь 16 разрядов аналого-цифрового преобразования звукового сигнала. Первые платы звука ПК имели разрядность преобразования 8 и квантовали звуковой сигнал 128 ступеньками уровня. Это, конечно, было явно недостаточно для HiFi- звуковоспроизведения.

Итак, важный параметр звуковых плат мультимедиа (аудиоадаптеров) - разрядность их аналого-цифрового преобразователя (АЦП). Другой не менее важный параметр - частота квантования. Сколько дискретных значений сигнала надо получить за период сигнала? На этот вопрос можно ответить точно, если сигнал является периодическим - например всем знакомой синусоидой.

Чтобы можно было принципиально судить о величине (амплитуде) синусоидального сигнала, мы должны взять минимум две его выборки в моменты времени, соответствующие максимуму и минимуму синусоиды. По этим двум значениям с помощью фильтра можно восстановить синусоиду. Естественно, что синусоида с большим периодом представляется уже множеством выборок, что дает лучшее приближение. Восстановление аналогового представления сигнала по его цифровому выполняется с помощью цифро-аналоговых преобразователей (ЦАП) и фильтров, подавляющих шумы квантования, расположенные в области высоких частот.

Манипуляторы

Простым, удобным и популярным средством для управления компьютером является мышь. Это устройство с проводом по внешнему виду и характеру перемещений действительно похоже на мелкое животное, в честь которого оно названо. Однако в отличие от вредного грызуна компьютерная мышь – весьма полезное устройство ввода информации в компьютер, позволяющее во многих случаях практически полностью заменить громоздкую клавиатуру. И это при том, что мышь имеет всего две-три клавиши, а используют из них обычно одну.

Разнообразные применения мышки основаны на преобразовании направления и скорости перемещения кисти руки в управляющие сигналы. Водит пользователь мышкой по коврику взад-вперёд и вправо-влево, изредка нажимая при этом пальцем на клавишу – а компьютер выполняет задаваемые этими действиями операции. Конечно же, мышь по своей сути – вследствие простоты управления компьютером, чем клавиатура, хотя они и не всегда взаимозаменяемы. Особенно удобно работать мышью с графическими программами и с таблицами. Мышь может иметь две или три кнопки. Чувствительность мыши характеризующей разрешающей способностью. В некоторых ситуациях оказывается удобным работать ножной мышью. Такая мышь представляет собой две педали для ног, одна из которых управляет перемещением курсора, а другая заменяет кнопки. Конечно же, не каждый сможет столь же ловко управляться с ножной мышью, как с ручной. Однако неоспоримым достоинством ножной мыши является то, что она позволяет высвободить руки для более важных занятий. И совсем незаменимой она становится тогда, когда руками невозможно воспользоваться из-за болезни или по другим обстоятельствам.

Существуют не только механические мышки, но и оптические, в которых направление и скорость движения определяется по отражению света от специального коврика. Бывают беспроводные мышки и даже миниатюрные беспроводные мышки, которые при работе одевают на палец как перстень.

Шаровой манипулятор выполняет ту же работу, что и мышь. Да и внешне он выглядит как механическая компьютерная мышь, перевёрнутая на спину. Шарик, по которому ездит мышь и который находится у неё внизу, у манипулятора расположен на виду – сверху. Он вмонтирован обычно в корпус компьютера или в клавиатуру. Для управления компьютером этот шарик вращают в разных направлениях пальцами. Рядом с шариком размещены клавиши манипулятора.

Одни люди предпочитают работать мышью, другие – шаровым манипулятором. Манипулятор более точен, чем мышь, поскольку шарик в нём крупнее, да и вращают его более чувствительными пальцами, а не грубой кистью.

Если компьютер используется для игровых и тренажёрных задач, а также в некоторых случаях, то для управления перемещением объекта по экрану удобно пользоваться специальной ручкой, имеющей название джойстик – в буквальном переводе палочка радости. Эта ручка похожа на одну из ручек пилота в кабине самолёта. Впрочем, джойстиком называют не только ручку, но и другие конструктивные варианты устройства со сходными функциями. Придумали даже джойстик, с которым можно работать на весу, похаживая по комнате. Джойстик применяется во многих играх с примитивным сюжетом. Простейший джойстик по принципам действия похож на клавиши. И возможности его близки к возможностям клавиатуры. В такой ситуации опытный пользователь может предпочесть клавиатуру, а новичку более привычным может показаться джойстик. Более интересные возможности открывает джойстик с пропорциональным управлением, при котором скорость перемещения рукоятки джойстика пропорциональна скорости перемещения.

Современные джойстики делят на пять конструктивных вариантов. Они могут быть выполнены в виде самолётной ручки управления или штурвала, а также бывают кнопочными, настольными и комбинированными.



Дата добавления: 2020-10-25; просмотров: 497;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.