Дифференциальные уравнения движения идеальной жидкости


(уравнения Эйлера)

 

Формально общие уравнения движения идеальной жидкости можно получить из уравнений, составленных для покоящейся жидкости, если воспользоваться принципом Д. Аламбера, согласно которому к уже действующим силам добавляются силы инерции.

Обозначим силу инерции, отнесенную к единице массы движущейся идеальной жидкости 1 . Тогда проекции этой силы на координатные оси будут равны: -1 ; -1 и -1 . Знак минус в данном случае указывает на то, что единичная сила инерции имеет направление противоположное ускорению.

С учетом сказанного дифференциальные уравнения движения идеальной жидкости получает вид:

 

(56)

 

Для случая неустановившегося движения, когда полный дифференциал скорости, например , равен

 

,

тогда

.

 

С учетом аналогичных выражений, полученных для и , дифференциальные уравнения неустановившегося движения идеальной жидкости получают следующий вид:

 

(57)

 

Для установившегося движения идеальной жидкости, когда , дифференциальные уравнения движения идеальной жидкости имеют вид

 

(58)

 

Системы дифференциальных уравнений (57) и (58) называются системами дифференциальных уравнений движения идеальной жидкости, представленными в развернутом виде.

Уравнения (56) – (58) применимы как для случаев движения капельных жидкостей (когда ), так и для движения газов (когда ).

 

 



Дата добавления: 2017-05-02; просмотров: 1006;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.