Пределы выносливости
Циклическая долговечность материалов при переменных напряжениях характеризуется кривыми усталости (кривыми Велера). Кривые усталости (рис. 1.4) получают экспериментально на стандартных образцах, задавая им различные величины напряжений smax и фиксируя число циклов N, при которых происходит разрушение образцов.
Уравнение кривой усталости: siqNi = C,
где С – постоянная, соответствующая условиям проведения эксперимента.
|
Как показывает опыт, кривые усталости имеют два характерных участка: левый наклонный и правый горизонтальный (рис. 1.4). Абсциссу точки переломаNlim (NG) кривой усталости называют базовым числом циклов, а соответствующий ему предел выносливости – пределом длительной выносливости (или базовым) slimb (sR). Например, для образцов черных металлов Nlim = 107, для цветных сплавов Nlim = (5…10)107. | Рис. 1.4 |
При N < Nlim имеет место предел ограниченной выносливости slim (sRN).
Как видно из рис. 1.4, чем выше напряжение s, тем раньше начнется усталостное разрушение.
Связь между пределами выносливости по уравнению Велера:
|
slimqN = slimbq Nlim , откуда slim = slimbKL ,
где KL = (Nlim / N)1/ q называют коэффициентом долговечности.
При N ³ Nlim принимают KL = 1.
Показатель степени qзависит от материала, термообработки, вида напряжений, влияния условий эксперимента и т.д. Он колеблется от 4 до 20, и его значения рекомендуются в каждом конкретном случае расчета детали (узла).
Пределы выносливости материалов (кривые усталости) определяют на стандартных испытательных образцах. Образец – это гладкий цилиндрический стержень малого диаметра (например, 10 мм) со свободной полированной поверхностью без упрочнения и термообработки. Нет нужды доказывать, что реальные детали отличаются от образцов формой, наличием на поверхностях посадок и других концентраторов напряжений (резьба, пазы, шлицы, галтели и др.), размерами, термообработкой, шероховатостью. Все эти отличия влияют на прочность и обязательно должны учитываться при расчетах.
В общем случае предел выносливости детали при асимметричном цикле нагружения:
slimD = 2s-1 / [(1 – R)KsD / KLs + ysD(1 + R)], (1.2)
(tlimD – то же с заменой символов s на t),
где s-1 – предел длительной выносливости образца при симметричном цикле нагружения, МПа; R – коэффициент асимметрии цикла; KsD = (Ks /Kds +1/KFs – – 1) / KV – коэффициент снижения предела выносливости при переходе от образца к реальной детали. Здесь Ks – эффективный коэффициент концентрации напряжений; Kds – коэффициент влияния размеров детали; KFs – коэффициент влияния качества (шероховатости) поверхности; KV – коэффициент влияния поверхностного упрочнения (термообработки); ysD – коэффициент влияния асимметрии цикла напряжений; KLs = (NlimD / NE)1/ q – коэффициент долговечности детали (узла). Здесь NlimD – базовое число циклов детали; NЕ – эквивалентное число циклов изменения напряжений:
NE = S [(si / smax)qNi], (1.3)
где smax– напряжение от длительно действующей максимальной нагрузки переменного режима; si и Ni – постоянное напряжение и соответствующее ему число циклов i-го постоянного блока циклограммы нагружения.
Коэффициенты в формуле (1.2) выбираются по справочникам.
Дата добавления: 2021-07-22; просмотров: 372;