ГИС-технологии в изысканиях автомобильных дорог


Геоинформационной системой (ГИС) называют интегрированную автоматизированную систему и комплексную компьютерную технологию, базирующуюся на последних достижениях науки и техники в области информатики, космической навигации, электронной тахеометрии, электронной аэрокосмической и наземной стереофотограмметрии, подповерхностного зондирования, связи, организации баз данных и предназначенную для получения, ввода, хранения, обновления, обработки, визуализации различных видов географически привязанной информации для оперативного комплексного анализа, прогнозирования и принятия решений по широкому кругу вопросов, связанных с картографированием, изысканиями, проектированием, строительством и эксплуатацией инженерных объектов, диагностикой, паспортизацией, экономикой, экологией, сервисом, демографией, безопасностью и т.д.

Анализ места ГИС (Цветков В.Я. Геоинформационные системы и технологии. - М: Финансы и статистика, 1998. - 285 с.) среди других автоматизированных систем позволяет сделать вывод о том, что комплексная автоматизированная обработка информации в ГИС не имеет аналогов с технологиями обработки информации в других автоматизированных системах.

Современные геоинформационные системы представляют собой новый тип автоматизированных интегрированных систем, которые включают в себя как методы обработки данных многих существующих или ранее существовавших систем, таких как АСНИ (научных исследований), САПР (проектирования), АСИС (информационные системы), СУБД (управления базами данных), АСК (картографирования), АСЦФ (фотограмметрические системы), АКС (кадастровые системы) и т.д., так и обладают уникальной спецификой в организации и обработке данных, поставивших их на качественно более высокий уровень как многоцелевых, многоаспектных систем.

Существовавшее до недавнего времени представление о ГИС как об автоматизированных системах управления компьютеризованными базами данных следует считать устаревшим, поскольку в ГИС может входить много баз данных, а полная технология обработки в ГИС значительно шире, чем при работе с конкретной базой данных. Кроме того, любая ГИС обязательно включает в себя систему экспертных оценок, которую реализовать на уровне баз данных не представляется возможным. И, наконец, базы данных в ГИС имеют не только пространственную, но и временную характеристику, что важно, прежде всего, для географических данных.

На основе анализа целей и задач существующих ГИС более правильным следует считать определение ГИС как геоинформационныхсистем, а не как географических информационных систем, поскольку процент чисто географических данных в них относительно невелик. Поэтому можно дать более короткое определение геоинформационным системам (ГИС).

ГИС - это автоматизированная интегрированная информационная система, предназначенная для обработки пространственно-временных данных, основой интеграции которых служит географическая информация.

С точки зрения функционального назначения ГИС можно рассматривать как:

систему управления,предназначенную для обеспечения принятия решений по оптимальному управлению разнообразными пространственными объектами (земельные угодья, природные ресурсы, городские хозяйства, транспорт, экология и т.д.);

автоматизированную информационную систему,объединяющую технологии и технологические процессы известных информационных систем типа САПР, АСНИ, АСИС;

геосистему,включающую технологии (прежде всего технологии сбора информации) таких систем как системы картографической информации (СКИ), автоматизированные системы картографирования (АСК), автоматизированные фотограмметрические системы (АСЦФ), земельные информационные системы (ЗИС), автоматизированные кадастровые системы (АКС) и т.д.;

систему, использующую базы данных,характеризуемую широким набором данных, собираемых с помощью различных методов и технологий, и объединяющие в себе как базы данных обычной (цифровой) информации, так и графические базы данных. При этом особую роль здесь приобретают экспертные системы;

систему моделирования,использующую в максимальном объеме методы и процессы математического моделирования, разработанные и применяемые в рамках других автоматизированных систем;

систему получения проектных решений,использующую методы автоматизированного проектирования в САПР, но и решающую ряд других специфических задач, например, согласование принципиальных проектных решений с землепользователями, заинтересованными ведомствами и организациями;

систему представления информации,являющуюся развитием автоматизированных систем документационного обеспечения (АСДО) и предназначенную, прежде всего, для получения картографической информации с различными нагрузками и в различных масштабах;

интегрированную систему,объединяющую в единый комплекс многообразный набор методов и технологий на базе единой географической информации;

прикладную систему, не имеющую себе равных по широте применения, в частности, на транспорте, навигации, военном деле, топографии, географии, геологии, экономике, экологии, демографии и т.д.;

систему массового пользования, позволяющую применять картографическую информацию на уровне деловой графики для широкого круга пользователей, когда используют картографические данные, далеко не всегда создавая для этой цели топографические карты.

Одним из основных принципов организации пространственной информации в ГИС является послойный принцип (рис. 3.1).

Рис. 3.1. Пример совокупности тематических слоев, как интегрированной основы графической части ГИС

Концепция послойного представления графической информации была заимствована из систем САПР, однако в ГИС она получила новое качественное развитие, так, например:

тематические слои в ГИС могут быть представлены не только в векторной форме (как в САПР), но и в растровой форме;

векторные данные в ГИС обязательно являются объектными, т.е. несут информацию об объектах, а не об отдельных их элементах, как в САПР;

тематические слои в ГИС являются определенными типами цифровых картографических моделей, построенными на основе объединения пространственных объектов, имеющих общие свойства или функциональные признаки.

Совокупность тематических слоев образует интегрированную основу графической части ГИС, в которых объединяющей основой (подложкой) являются цифровые и электронные карты.

При разработке инженерных проектов (ИП), обоснований инвестиций (ОИ) или технико-экономических частей проектов (ТЭЧ) с непосредственным использованием ГИС решают следующие разделы:

природно-климатические условия района проектирования: климат, рельеф, гидрография, растительность и почвы, инженерно-геологические и гидрогеологические условия;

транспортная сеть района тяготения (автомобильные дороги, железные дороги, трубопроводы, воздушный транспорт, внутренние водные пути сообщения);

состояние сети автомобильных дорог: годы постройки, категория дорог, состояние дорожных покрытий, земляного полотна, обочин, мостов, путепроводов, водопропускных труб и малых мостов, системы поверхностного водоотвода, обстановки и принадлежностей дорог и т.д.;

экономика района тяготения (промышленность, сельское хозяйство, транспорт и т.д.);

грузооборот, пассажирооборот, грузонапряженность на существующей транспортной сети в существующих условиях;

распределение общего объема грузоперевозок по видам грузов: промышленные, сельскохозяйственные, строительные, лесные, торгово-снабженческие;

распределение объемов перевозок по видам транспортных связей: межобластные, межрайонные, внутрирайонные;

транспортно-эксплуатационные показатели участков автомобильных дорог объемы грузовых перевозок, интенсивность и состав существующих транспортных потоков, средняя скорость транспортных потоков;

потери от ДТП;

себестоимость перевозок;

существующие показатели работы автотранспорта: коэффициент использования пробега, коэффициент использования грузоподъемности автотранспорта, средняя грузоподъемность грузового автотранспорта, количество дней работы автотранспорта в году;

существующая интенсивность движения и состав транспортных потоков в узлах и на перегонах существующей транспортной сети.

Одной из главных задач использования ГИС-технологий в изысканиях автомобильных дорог является обеспечение автоматизированных согласований принципиальных проектных решений (план трассы, продольный профиль, условия пересечений существующих железных, автомобильных дорог, коммуникаций, водотоков, снос, отвод земель и т.д.) с заинтересованными организациями, ведомствами, частными пользователями и владельцами.

3.4. Методы обоснования полосы варьирования конкурирующих вариантов трассы

Размеры полосы варьирования конкурирующих вариантов трассы в значительной степени определяют как объемы аэро- и наземных изысканий, так и объемы проектных работ по поиску наилучшего положения трассы. Назначение излишне широкой полосы варьирования приводит к неоправданному увеличению объемов проектно-изыскательских работ и сильно осложняет поиск наилучшего проектного решения. При занижении ширины полосы варьирования возникает опасность, что наилучший вариант трассы может оказаться за пределами зоны, освещенной материалами изысканий.

В связи с этим обоснованию размеров зоны варьирования трассы должно уделяться исключительное внимание. Выбранная зона варьирования должна охватывать все участки местности, где могут пройти конкурирующие варианты автомобильной дороги.

Ширину полосы варьирования трассы до недавнего времени устанавливали по топографическим картам (обычно М 1:25 000-1:10 000), по материалам аэросъемок прошлых лет и по результатам воздушных обследований с учетом топографо-геодезических, ситуационных, инженерно-геологических, почвенно-грунтовых, гидрогеологических, гидрометеорологических и других условий. При этом обоснование полосы варьирования осуществлялось, как правило, субъективно без использования аналитических программ и компьютерной техники.

В практике изысканий и проектирования дорог за рубежом (например, в США, Канаде и др.) выбору полосы варьирования трассы на стадии подготовительных работ, предшествующих собственно изысканиям, уделяется огромное внимание. И это не случайно, поскольку при обоснованной полосе варьирования трассы в ходе последующего проектирования удается находить проектные решения, строительная стоимость которых до 10 % ниже стоимости вариантов без предварительного детального обоснования полосы варьирования, при одновременном снижении стоимости изысканий и проектирования, трудовых затрат и сокращения сроков выполнения проектно-изыскательских работ. В США, например, в связи с этим затраты на рекогносцировочные изыскания и обследования полосы варьирования составляют около 50 % от суммы затрат на весь комплекс изыскательских работ.

В связи с произошедшим в стране переходом на технологию и методы системного, автоматизированного проектирования автомобильных дорог все большее значение начинают приобретать методы аналитического обоснования полосы варьирования трассы с использованием компьютерных программ. Первый аналитический метод обоснования полосы варьирования трассы в нашей стране был разработан Д.Г. Румянцевым (Федоров В.И., Румянцев Д.Г. Инженерные аэроизыскания автомобильных дорог. - М.: Транспорт, 1984. - 240 с. Федотов Г.А. Автоматизированное проектирование автомобильных дорог. - М.: Транспорт, 1986. - 318 с). Суть его сводится к следующему.

С использованием имеющихся топографических карт, цифровых и электронных карт, материалов аэроизысканий прошлых лет, материалов изысканий, выполненных на предшествующих стадиях проектирования, а также результатов воздушных обследований строят предварительную цифровую модель местности (ЦММ), которой охватывают заведомо большую территорию, чем это требуется для установления наилучшего направления трассы. Особенно часто для этой цели используют материалы изысканий предшествующих стадий проектирования, например, материалы рекогносцировочных изысканий на стадии обоснования инвестиций (ОИ), для обоснования полосы варьирования, для разработки инженерного проекта (ИП) и т.д.

При подготовке предварительной ЦММ и аналитического определения границ полосы варьирования конкурирующих вариантов трассы из рассмотрения сразу же исключают объекты и участки местности, проход трассы автомобильной дороги через которые либо заведомо нецелесообразен (ценные сельскохозяйственные угодья, болота, оползни, осыпи, засоленные почвы, закарстованные участки местности, вечномерзлые грунты и т.д.), либо вовсе невозможен (территории промышленных предприятий, населенные пункты, территории оборонных объектов, заповедные зоны и т.д.), а также устанавливают фиксированные точки и направления, проход трассы через которые обязателен. Рассматривают также участки местности, где в ходе аналитического трассирования необходимо решить вопрос возможности их обхода, либо пропуска через них трассы автомобильной дороги. К таким участкам относят отмеченные выше ценные сельскохозяйственные угодья, болота, оползни, осыпи, засоленные почвы, закарстованные участки и, кроме того, пучинистые участки местности, конусы выноса и т.д. Им придают соответствующие стоимостные значения возведения земляного полотна автомобильной дороги, и появляется возможность автоматического альтернативного решения трассы в пользу обхода участка местности с высокой стоимостью строительных работ, либо в пользу прохождения с трассой по этому участку, если его обход связан со значительным удлинением трассы.

Границы полосы варьирования устанавливают путем аналитического предварительного компьютерного трассирования с использованием предварительной ЦММ, на которой отмечают границы участков, прохождение трассы через которые заведомо нецелесообразно (рис. 3.2, зона а); границы зон с различными стоимостными показателями возведения земляного полотна автомобильной дороги (рис. 3.2, зоны б-д); структурные линии с точками характерных изломов местности. При этом точки излома контуров и рельефа нумеруют по линиям, располагаемым поперек направления воздушной линии.

Рис. 3.2. Предварительная цифровая модель местности для обоснования окончательных границ полосы варьирования трассы

Компьютерное определение границ полосы варьирования производится в следующей последовательности (рис. 3.3):

Рис. 3.3. Вариантный перебор возможных направлений трассы

в каждый образованный угол поворота трассы и в каждый перелом продольного профиля вписывают горизонтальные и вертикальные кривые минимальных радиусов, сообразно категории дороги. Зоны размещения кривых ограничивают концом предыдущей и началом последующей кривых;

все варианты, для которых допустимые радиусы кривых в плане и продольном профиле вписаны быть не могут, а продольные уклоны оказываются больше допустимых, из рассмотрения исключаются;

в пределах полученной таким образом зоны осуществляют перебор всех возможных вариантов с сопоставлением их между собой по укрупненным приведенным затратам. К дальнейшему рассмотрению принимают зону, разместившуюся между лучшим вариантом и прилегающими к нему вариантами, приведенные затраты для которых не отличаются более чем на 15 % от лучшего варианта трассы. При этом могут быть получены разобщенные зоны, каждая из которых определяет свое принципиальное направление трассы. Появление разобщенных зон варьирования характерно для ранних стадий проектирования (ОИ).

Детальный сбор изыскательской информации осуществляют после этого уже только в пределах обоснованной полосы (или полос) варьирования наилучших вариантов трассы. На ранних стадиях проектирования (ОИ) нередко приходится рассматривать значительное число принципиальных направлений трассы.

В связи с необходимостью при проектировании на уровне САПР-АД получения исходной экономической, топографической, инженерно-геологической, гидрогеологической, почвенно-грунтовой, гидрометеорологической и других видов обязательной изыскательской информации на полосе варьирования трассы значительной ширины самой важной на стадии производства полевых работ становится проблема

использования современных, высокопроизводительных и достаточно точных методов автоматизированного сбора, регистрации и обработки исходных данных о местности. Эта задача может быть решена лишь при условии выполнения изыскательских работ силами специализированных организаций, оснащенных парком современного аэросъемочного, электронного геодезического, электронного стереофотограмметрического, навигационно-космического, инженерно-геологического оборудования, а также вычислительной техники, укомплектованной развитым парком периферийного оборудования (лазерными и струйными принтерами, сканерами, плоттерами и т.д.).

Основными задачами дальнейших исследований в этой важнейшей области изысканий являются: научное обоснование дифференцированных в зависимости от стадий проектирования значений отклонений укрупненных приведенных затрат между лучшим вариантом трассы и двумя крайними, оконтуривающими границы зоны варьирования (в настоящее время это 15 %). Очевидно эти отклонения должны быть меньшими для более поздних стадий проектирования;

разработка нового метода обоснования полосы варьирований трассы, основанного на построении экономической модели местности (ЭММ) - «экономической лощины» с использованием принципов сплайн-трассирования.



Дата добавления: 2017-03-12; просмотров: 1656;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.015 сек.