Способы электрического управления положением антенного луча.
Электрическое управление положениям антенного луча может осуществляться а) фазовым и б) частотным методами.
а) При помощи фазовращателей. Изменение фазового сдвига может быть плавным или дискретным.
На практике применяются фидерные схемы антенных решеток. Различают:
- последовательные
- параллельные
- комбинированные фидерные схемы.
Последовательная схема:
Рис.93. Линейная решетка с последовательной схемой
включения фазовращателей.
В последовательных схемах используются, как правила, идентичные фазовращатели, при помощи которых создаются одинаковые фазовые сдвиги между токами в соседних излучателях. Если нужно отклонить антенный луч на некоторый угол, то следует изменить электрическую длину всех фазовращателей на одну и ту же величину, соответствующую этому отклонению. Питающий фидер здесь работает в режиме бегущих волн, а излучатели слабо связаны с фидером при помощи направленных ответвителей.
Недостатки:
1. Предъявляются высокие требования к системе управления.
2. должна быть высокая стабильность работы фазовращателей.
3. Большие потери.
4. Неравномерность распределения мощности между фазовращателями.
Параллельная схема:
Рис. 94. Линейная решетка с параллельной схемой
включения фазовращателей
В параллельной схеме через каждый фазовращатель проходит лишь часть излучаемой мощности, поэтому требования к допустимой мощности фазовращателей оказываются более низкими. Коэффициент полезного действия схемы примерно соответствует коэффициенту полезного действия одной параллельной ветви и, как правило, получается более высоким, чем в последовательной схеме. Схема не требует высокой стабильности фазовращателей. Недостаток: сложность системы управления.
Комбинированная схема:
Рис. 95. Линейная решетка с комбинированной схемой
включения фазовращателей.
Схема, показанная на рис.95, является комбинированной, так как в ней деление мощности осуществляется последовательно при помощи направленных ответвителей, а фазовращатели включены параллельно.
Достоинством этой схемы является возможность осуществления независимой регулировки амплитудного распределения путем изменения коэффициентов связи в направленных ответвителях.
Проходная схема:
Рис.96. Проходная (а) и отражательная (б)
схемы линейных антенных решеток.
В проходных схемах общий разветвленный фидерный тракт отсутствует. Деление мощности здесь осуществляется при помощи слабонаправленной антенны и специальных приемных элементов. Мощность с выхода передатчика поступает в слабонаправленную антенну и излучателя ею преимущественно в ту часть окружающего пространства, где размещены приемные элементы решетки. Положение антенного луча, формируемого излучающими элементами решетки, определяются сдвигами по фазе между токами в этих элементах. Оно может быть изменено за счет воздействия на управляемые фазовращатели.
Отражательные схемы отличаются от проходных тем, что в них излучающие элементы совмещены с приемными, а на месте излучающие элементов установлен отражающий экран. Благодаря этому энергия проходит через каждый фазовращатель дважды: в прямом и обратном направлениях.
б) При частотном управлении меняется частота питающего решетку генератора. Это приводит к изменению сдвига по фазе между токами в излучателях решетки, в результате которого меняется положение антенного луча. Частотное управление является наиболее простым с точки зрения технического выполнения, но требует перестройки частоты передатчика в сравнительно широких пределах.
Решетки с частотным управлением так же, как и решетки с фазовым управлением, могут быть построены по последовательной или параллельным схемам. На практике, однако, ввиду более простой конструкции и лучшего согласования с питающим фидером наиболее широко применяются решетки с последовательной схемой включения фазовращателей и определяется, как известно, фазовым сдвигом между токами в соседних излучателях . Последний в свою очередь зависит от длины отрезка фидера , включенного между соседними излучателями, и от длины волны в фидере , и может быть представлен в виде
,
где целое число, выбираемое так, чтобы сдвиг по фазе был меньше .
В соответствии с этим направление главного максимума определяется равенством
Из последнего выражения видно, что чем больше отношение и , тем сильнее будет отклоняться главный максимум при одном и том же изменении частоты питающего генератора. На практике для увеличения угла отклонения луча, вызванного изменением частоты, широкое применение находят свернутые и зигзагообразные волноводы, так как с их помощью можно получить отношение большим единицы.
Дата добавления: 2017-03-12; просмотров: 1900;