Разделение в поле центробежных сил.
Наряду с действием сил, определяемых внешним тяготением, на компоненты смесей могут действовать и центробежные силы, под действием которых также происходит разделение смесей на фракции с различной плотностью и размерами.
На интенсивность разделения действуют две группы факторов. Одна группа определяется конструктивными факторами – это так называемый коэффициент разделения.
Вторая группа факторов определяется свойствами разделяемых продуктов (радиусом частиц, различием плотностей и вязкостью). Это фактор разделяемости. Фактор или коэффициент разделения зависит от размеров машины, частоты вращения вала, числа разделяющих тарелок, и углом их наклона к горизонту. Произведение факторов разделения и разделяемости определяет производительность агрегата.
Агрегаты, в которых применяется центробежная сила разделяют на два основных типа: центрифуги и сепараторы.
Центрифуги делят на три класса:
1. тихоходные (фактор разделения Фр < 1000),
2. скоростные (Фр = 1000 ¸ 5000),
3. высокоскоростные (Фр более 5000).
По характеру отделения осадка центрифуги делят на отстойные, фильтрующие и комбинированные. В центрифугах обычно разделяют суспензии и дымы. В отстойных центрифугах жидкая часть смеси (фугат) заполняет рабочий объем ротора и осадок выделяется на стенках, причем исходная жидкая смесь непрерывно подается в рабочий объем, а фугат непрерывно удаляется через борт ротора. Иногда смесь не добавляется при центрифугировании. Это бывает тогда, когда разделяемость фаз невелика.
В непрерывно-действующих центрифугах осадок удаляется горизонтальным шнеком, расположенным соосно с ротором. В периодически-действующих центрифугах ротор обычно расположен вертикально, а удаление осадка производится специальными ножами, срезающими осадок со стенок барабана центрифуги. Периодически действующие центрифуги являются чаще всего фильтрующими: фугат просачивается через осадок и удаляется через перфорированные стенки барабана.
Сепараторы.
Сепараторы – это тонкослойные центрифуги. Назначение сепараторов состоит в разделении жидких фаз – эмульсий и суспензий. В сепараторах возможно отделение как жидкой, так и твердой фаз. Движущей силой разделения, как и при осаждении, является различие плотностей фаз.
Сепараторы применяются как для разделения фаз, так и для изменения их состава. Изменение состава приводит к сгущению суспензий и к осветлению фугатов. Поэтому сепараторы подразделяются на сепараторы-разделители и сепараторы-осветлители, а также комбинированные сепараторы, в которых реализуются обе функции.
В осветлителях осадок выделяется на стенках сепаратора, а в разделителях поток плотной фазы отделяется от потока легкой фракции.
Различают сепараторы и по степени изоляции разделяемых материалов от внешней среды. Они могут быть открытыми, полузакрытыми и герметическими. В открытых сепараторах и входящий и исходящий материальные потоки контактируют с атмосферой. Полузакрытые сепараторы имеют либо подачу, либо отвод жидкостей открытыми для контакта с воздухом. Чаще открытой бывает подача. При отводе продуктов под давлением жидкость не контактирует с воздухом, и такие сепараторы называют безпенными. В герметических сепараторах и подвод и отвод продуктов изолированы от контакта с воздухом.
По своей конструкции сепараторы имеют привод, барабан, приемно-отводящее устройство и приемник шлама. Кроме того, в составе сепараторов имеются тормозные приспособления, пульты управления и контрольно-измерительные приборы, такие как термометры, тахометры, ареометры и другие, например указатели уровня жидкостей.
Минимальный диаметр частиц, остающихся в жидкости при сепарировании может быть оценен из соотношения:
, м
В этом соотношении П – означает производительность выраженную в м3/сек, m - динамическая вязкость среды, Па×с; z – число тарелок, установленных в сепараторе (штук); tga - тангенс угла наклона этих тарелок к горизонтали. Величины R и R0 означают, соответственно, радиусы края тарелок и вала сепаратора, измеряемые в метрах; Dr - разность плотностей частиц и жидкости, выраженную в кг/м3; n – частота вращения тарелок в 1/сек.
Трансформацией выражения для очистки минимальных размеров частиц можно представить равенство для производительности сепаратора.
.
Важным параметром сепараторов является давление жидкости на стенки барабана Pж, по грубой оценке оно определяется по разности кинематических энергий единицы объема жидкости на стенках барабана и на поверхности вала, т.е.
.
Отсюда следует, что потребная на сепарацию мощность может быть определена из соотношения: N = Pж × А × V, где А – скорость движения жидкости на расстоянии, соответствующем положению выпускного отверстия, измеряемом от оси сепаратора. По приближенной оценке V @ 2p × Rвн × n, R0 = 0,1 Rвн. Тогда выражение, принятое для оценки мощности примет вид:
N = к × Н × R4 × n3 × rж.
Если в этом уравнении величину N выразить в киловаттах, а Н и R в м, n в 1/с, а r в кг/м3, то значение К принимают равным 1,6–1,8 х 10-5.
Кроме затрат энергии в единицу времени на движение жидкости, имеются затраты на трение в механизмах, диссипация (рассеяние) энергии при турбулизации потоков и других источников потерь – К.
Так как на практике приходится разделять жидкости с различными размерами частиц, то становится очевидным, что при уменьшении диаметра частиц, например, в два раза, необходимо увеличить w тоже в два раза, а потребную мощность в 8 раз. Это обстоятельство привело к необходимости разработки и применению так называемых баромембранных установок, позволяющих выделять из коллоидных растворов, в которых частицы имеют размеры сопоставимые с размерами молекул. Мембрана – это перегородка, толщиной 0,25–0,5 микрон, содержащая ориентированные к ее поверхности поры – капилляры, диаметром сопоставимым с размерами молекул, т.е порядка 10-9м. Такие мембраны называют анизотропными. Если мембраны изготавливают из изотропных пористых материалов, то их толщина увеличивается на один-два порядка, но соответственно, снижается и их проницаемость.
Так как анизотропные мембраны имеют малую прочность, то их наносят на относительно толстые пористые подложки в 100–200 мкм и с порами на 2–3 порядка более крупными, чем в мембранах.
Ориентировочная величина скорости опускания жидкости над мембранным фильтром составляет 0,5–5,0 мм/сек. Так как доля площади фильтра, занимаемая порами составляет лишь 20% от общей, то скорость движения вдоль пор должна находиться в пределах 0,5–25 мм/сек.
В соответствии с формулой Пуазейля получим:
,
где ℓ - длина поры в метрах. Подставив численные значения величин, входящих в формулу (при V = 2,5 мм/с; m = 10-3 Па × с, ℓ = 5 × 10-7м и R = 10-9м), получим что требуются разница давлений DР = 100, превосходящая атмосферное. Такие давления технически осуществить очень сложно.
Дата добавления: 2021-06-28; просмотров: 623;