Контактный диск (выключатель) 8

Контактный диск (выключатель) управляет реле выключателей.

Имеет 4 контактных сектора, 2 диаметрально противоположных сектора закорочены между собой.

При отсутствии щетки контактируют с разомкнутыми между собой секторами.

При наличии контактный диск поворачивается и щетки контактируют с секторами, которые соединены между собой. Таким образом через выключатель питание = I подается на обмотки исполнительных реле РСМ-2, через 2 резистора, включенных параллельно.

Коллектор со щетками

Соединяет ОУ6 со щетками потенциометра 7

Горизонтальный полет

При отсутствии разворота самолета потенциометра 7, поэтому питание на ОУ6 не подается. Щетка контактной ламели расположена на средней части, поэтому питание на ОУ4 не подается. Щетки контактного диска (выключателя) расположены на ламелях, которые не замкнуты.

 

Разворот

Гироузел поворачивается. Щетка 1 сходит с обесточенной средней части контактной ламели. ОУ4 подключается к фазе I или III. Клемма 6 находится под средним потенциалом фаз III и I, так как соединена с делителем U этих фаз.

Благодаря делителю напряжения обмотка управленияОУ4

при подключении клеммы 2 к фазе I будет присоединена последовательно с сопротивлением делителя к фазам I-III и получит напряжение ;

При подключении клеммы 2 к фазе III будет присоединена к фазам III-I и получит ;

Фазы и сдвинуты на . Таким образом ДиД-0,5 при левом развороте будет вращаться в одну сторону, при правом – в другую.

 

При подаче U на ОУ4 возникает вращающий момент на валу ротора, который начинает поворачивать вал и связанный с ним контактный диск 8 относительно щеток и узел щеток относительно потенциометра 7. По мере смещения щеток от среднего положения возникает и будет увеличиваться разность потенциалов т.А и т.В . Это напряжение подается на ОУ6.

ОУ4 и ОУ6 находятся в противофазе, т.е. ампервитки ОУ4 находятся в противофазе к ампервиткам ОУ6.

Когда U на ОУ4 станет равным U ОУ6, двигатель ДиД-0,5 остановится. Щетки контактного диска будут находиться на токоподводящей поверхности диска. Срабатывает реле, контакты которого размыкают цепи систем коррекции.

Прекращение разворота

При прекращении гироскопический момент исчезает. Пружины ставят гироскоп в исходное положение, а связанная с ним щетка контактной ламели устанавливается в средней части. ОУ4 обесточивается .

ОУ6 получает питание от щеток потенциометра 7. U ОУ6 противоположно по фазе U ОУ4. Поэтому при прекращении разворота и обесточивании ОУ4 двигатель будет вращаться в обратную сторону под действием U ОУ6, направляя щетки потенциометра 7 к нулевому положению и контактный диск относительно его щеток. Когда щетки перейдут на секторы, которые не закорочены между собой, поступит команда на включение коррекции (контакты реле замкнутся, реле обесточивается).

Использование 3-х степенного гироскопа в качестве авиагоризонта.++

 

Рассмотрим возможность применения 3-х степенного гироскопа для определения пространственного положения воздушного судна.

Положение ВС относительно плоскости горизонта определяется двумя углами: углом тангажа и углом крена .

Угол тангажа – угол между продольной осью ВС и плоскостью горизонта, отсчитываемый в вертикальной плоскости.

Угол крена – угол поворота ВС вокруг его продольной оси, отсчитываемый от вертикальной плоскости, проходящей через продольную ось вертолета.

Положение ВС относительно плоскости горизонта можно определить, если на ВС знать направление ИСТИННОЙ ВЕРТИКАЛИ, т.е. линии, проходящей через центр Земли и ВС, и измерить отклонение ВС от этого направления.

Установим 3-х степенной гироскоп на летательный аппарат. Ось собственного вращения Y-Y расположена вертикально. Внешняя ось кардановa подвеса параллельна продольной оси ВС X-X, а внутренняя – направлена параллельно поперечной оси ВС Z-Z.

Поскольку свободный гироскоп стремится сохранить положение своей главной оси в пространстве неизменным, т.е. вертикально, то отклонение продольной и поперечной осей ВС от вертикально расположенной оси гироскопа позволит определить углы крена и тангажа.

Авиагоризонт будет правильно показывать углы крена и тангажа только в том случае, если ось ротора будет занимать строго вертикальное положение. Однако вследствие ряда причин ось ротора гироскопа отклоняется от вертикали.

Основные из них следующие: моменты трения в осях карданова подвеса, вращения Земли и перемещение ВС относительно Земли.

Для определения характера влияния вращения Земли на показания авиагоризонта представим авиагоризонт, расположенный на экваторе. В начальный момент времени главная ось гироскопа направлена по вертикали и перпендикулярна плоскости истинного горизонта, проходящего через т. А. Авиагоризонт покажет угол крена = 0, угол тангажа = 0.

В результате вращения Земли т. А вместе с Землей, например за 6 часов, повернется на 90°; вместе с т. А повернется и самолет, который стоит на Земле неподвижно.

При этом главная ось гироскопа, которая сохраняет свое положение в мировом пространстве неизменным, окажется по отношению к т. А развернутый на 90° и станет параллельна плоскости истинного горизонта. Авиагоризонт покажет угол крена =90°.

Аналогично на работе авиагоризонта сказывается и перемещение ВС относительно Земли.

Установим гироскоп так, чтобы его ось в начале полета была вертикальна и будем выполнять прямолинейный полет.

 

Однако в обычном, “Земном” смысле, это не будет прямолинейный полет. Под прямолинейном полетом в земных условиях понимают полет по дуге постоянного радиуса вокруг центра Земли, т.е. перемещения ВС относительно Земли также вызывает поворот вертикали места, над которым пролетает самолет, в то время как главная ось сохраняет свое положение вертикали относительно мирового пространства.

Как видно из рисунка в начальный момент времени главная ось гироскопа, установленного на ВС, расположена вертикально, и авиагоризонт покажет угол крена=0 , угол тангажа =0.

Предположим, в результате прямолинейного полета за какое-то время ВС переместился вт. В. Поскольку главная ось гироскопа стремится сохранить положение в пространстве неизменным, то она оказалась развернутой на 90° по отношению к плоскости истинного горизонта, проходящего через т. В и заняла положение не вертикальное, а горизонтальное, авиагоризонт покажет угол тангажа=90°

Таким образом, по отношению к Земле 3-х степенной гироскоп с вертикально расположенной осью будет менять свое положение, совершая так называемое КАЖУЩЕЕСЯ движение.

Движение называют кажущимся потому, что в действительности не гироскоп меняет свое положение относительно Земли, а Земля перемещается относительно гироскопа, сохраняющего положение своей оси в мировом пространстве неизменным.

Скорость этого кажущегося движения зависит от географической широты места, курса ВС, скорости полета и скорости вращения Земли. Если, например, ВС летит горизонтально со скоростью V=200 км/ч , с истинным курсом=30° на широте =60°, то главная ось гироскопа будет “уходить” по тангажу со скоростью ωz=6.45°/час, а по крену со скоростью ωx =5.5°/час.

Очевидно, что использование одного лишь гироскопа в карданном подвесе недостаточно для правильного измерения углов крена и тангажа. Необходимо такое устройство, которое бы заставило главную ось гироскопа всегда быть перпендикулярной плоскости истинного горизонта, т.е. располагаться по вертикали места.

В качестве такого устройства в авиагоризонтах используется система маятниковой коррекции, принцип работы которой описан в разделе “Авиагоризонт АГБ-3К”.

 






Дата добавления: 2017-02-13; просмотров: 1460; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2019 год. Материал предоставляется для ознакомительных и учебных целей. | Обратная связь
Генерация страницы за: 0.008 сек.