Иммобилизация клеток
Наряду с успешной иммобилизацией многих ферментов и применением этого метода в промышленности исследователи столкнулись с рядом трудностей, характерных для работы с ферментами, зависимыми от кофакторов, а также в тех случаях, когда трансформации осуществляются несколькими ферментами. Были предприняты попытки использовать активность «сложных» ферментов и ферментных комплексов путем иммобилизации клеток. Иммобилизация клеток позволяет эксплуатировать отдельные ферменты, а также их системы, что затруднительно при работе с иммобилизованными ферментами. Обмен иммобилизованных клеток отличается от метаболизма интактных микроорганизмов, что может быть использовано в целях регуляции трансформации. Эффективность процессов, осуществляемых иммобилизованными клетками, в ряде случаев выше их эффективности, как у свободных микроорганизмов, так и у иммобилизованных ферментов. Для иммобилизации клеток используются почти все методы, применяемые для иммобилизации ферментов, но наиболее распространенным в настоящее время является включение в полиакриламидный (ПААГ) и каррагенановый гели.
Получение аминокислот и органических кислот с использованием клеток, иммобилизованных в полиакриламидный и каррагенановый гели — один из примеров, демонстрирующих возможности и перспективы метода. Клетки Е. coli, иммобилизованные в ПААГ, осуществляли превращение фумаровой кислоты в аспарагиновую. При этом активность иммо-билизованных клеток сохранялась при 37°С в присутствии ионов Mg++ в течение 40 сут. при скорости протока 0,5 мл/ч через колонку размером 10х100 см, причем выход аспартата достигал 95 %. Процесс был успешно применен в промышленном масштабе. Ежесуточный выход кислоты при использовании промышленной колонки 1900 кг или 57,6 т/мес, время полужизни и активность клеток свыше 120 сут. Позже был разработан более экономичный способ иммобилизации клеток в каррагенан. Продуктивность иммобилизованных в каррагенан клеток в 15 раз превышала таковую для иммобилизованных в ПААГ, время полужизни их также увеличилось до 2 лет. Преимущества метода были так велики перед существовавшим ранее, что фирма “Танабе” в 1979 г. заменила им промышленное получение L-acnaрагиновой кислоты. Такой же процесс был осуществлен в Советском Союзе.
Получение L-яблочной кислоты из фумаровой с помощью иммобилизованных в каррагенан клеток Brevibacterium [iuvum— второй пример промышленного использования ферментативной активности микроорганизмов для биоконверсии органических соединений.
Пристального внимания заслуживает и метод иммобилизации смешанных культур. Так, осуществлена трансформация сорбозы в 2-кето-L-гулоновую кислоту смесью иммобилизованных в ПААГ клеток Gluconobacter melanogenusIFO 3293 и Pseudomonas syringaeNRRL B-865. Первая бактерия окисляла сорбозу в сорбозон, а вторая, обладая активной сорбозоноксидазой, образовывала 2-кето-L-гулоновую кислоту.
Политрансформации
Трансформация сложных органических молекул часто предполагает более чем одну ферментативную реакцию. В ряде случаев для получения практически ценных продуктов требуются весьма существенные перестройки молекулы субстрата, которые могут включать различные процессы, например окисление и гидролиз или окисление, восстановление и гидролиз и т. д. Эти задачи могут быть решены разными путями.
Дата добавления: 2017-01-26; просмотров: 1335;