Гидроэнергетика. Основные принципы использования энергии воды. Гидроэлектростанции. Энергия волн. Энергия приливов. Преобразование тепловой энергии океана в механическую
Значительно более высоким КПД обладают гидроэлектростанции (ГЭС) ввиду отсутствия на них термодинамического цикла (преобразования тепловой энергии в механическую). На ГЭС используется энергия рек [15]. Путем сооружения плотины создается разность уровней воды. Вода, перетекая с верхнего уровня на нижний либо по специальным трубам – турбинным трубопроводам, либо по выполненным в теле плотины каналам, приобретает большую скорость. Струя воды поступает далее на лопасти гидротурбины. Ротор гидротурбины приводится во вращение под воздействием центробежной силы струи воды. Таким образом, на ГЭС осуществляется преобразование:
Поэтому теоретически их КПД может достигать 90%. Кроме того, ГЭС являются маневренными станциями, время пуска их агрегатов исчисляется минутами. Гидроэнергетика представляет отрасль науки и техники по использованию энергии движущийся воды (как правило, рек) для производства электрической, а иногда и механической энергии. Это наиболее развитая область энергетики на возобновляемых ресурсах. Важно отметить, что в конечном итоге возобновляемость гидроэнергетических ресурсов также обеспечивается энергией Солнца. Действительно, реки представляют собой поток воды, движущийся под действием силы тяжести с более высоких на поверхности Земли мест в более низкие, и, в конце концов, впадают в Мировой океан. Под действием солнечного излучения вода испаряется с поверхности Мирового океана, пар ее поднимается в верхние слоя атмосферы, конденсируется в облака, выпадает в виде дождя, пополняя истощаемые водные запасы рек. Таким образом, используемая энергия рек является преобразованной механической энергией Солнца [11]. Часто бывает, что в силу тех или иных изменений атмосферных условий этот кругооборот нарушается, реки мелеют или даже полностью высыхают. Другим крайним случаем является нарушение этого кругооборота, приводящее к наводнениям. Для исключения этих обстоятельств на реках перед гидроэлектростанциями строят плотины, формируются водохранилища, с помощью которых регулируется постоянный напор и расход воды. В странах, расположенных на берегах морей и океанов, возможно строительство приливных ГЭС, которые используют энергию приливов, возникающих за счет сил гравитационного взаимодействия Земли, Луны и Солнца. Опыт строительства и эксплуатации приливных ГЭС имеется, например, во Франции (1985 г.) и в бывшем СССР на Баренцовом море. В XX в. строились также ГЭС небольшой мощности, где в качестве преобразователя кинетической энергии воды в механическую энергию для вращения электрогенератора использовались водяные турбины. Энергия, заключенная в текущей воде, многие тысячелетия верно служит человеку. Огромным аккумулятором энергии является мировой океан, поглощающий большую ее часть, поступающую от Солнца. В нем плещут волны, происходят приливы и отливы, возникают могучие океанские течения. На земле рождаются многочисленные реки, несущие огромные массы воды в моря и океаны. И люди раньше всего научились использовать энергию рек в качестве путей сообщения. Когда наступил золотой век электричества, произошло возрождение водяного колеса в виде водяной турбины. Считают, что современная гидроэнергетика родилась в 1891 г.
В нашей стране гидроэлектростанции начали строить в 30-х годах прошлого века. Первенцем была Чигиринская ГРЭС на реке Друть в Могилевской области. В довоенные годы был построен ряд небольших гидроэлектростанций на малых реках. Большинство из них в годы войны были разрушены, а в первые послевоенные годы восстановлены и построены новые. К концу 1956 г. в нашей республики насчитывалось 162 ГЭС общей установленной мощностью 11854 кВт. Однако, начиная с 60-х годов, они начали закрываться, не выдержав конкуренции с большой энергетикой. В последние годы во многих странах мира, особенно в Японии, Англии, странах Скандинавии, возрастающий интерес проявляется к получению энергии от морских волн, в результате чего эксперименты переросли в стадию реализации проектов. Создано большое количество различных центров, поглощающих и преобразовывающих волновую энергию. В результате воздействия сил притяжения Луны и Солнца происходят периодические колебания уровня моря и атмосферного давления, что приводит к образованию приливных волн, которые и используются для выработки электроэнергии на приливных электростанциях (ПЭС). Из современных приливных электростанций наиболее хорошо известны крупномасштабная электростанция Ране мощностью 240 МВт (Бретань, Франция), построенная в 1967 году на приливах высотой до 13 м, и небольшая, но принципиально важная опытная станция мощностью 400 кВт в Кислой Губе на побережье Баренцева моря (Россия) [12]. Блоки этой ПЭС буксировались на плаву в нужные места для включения ее в местные энергосети в часы максимальной нагрузки электроэнергии потребителями. Неожиданной возможностью океанской энергетики оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей, легко перерабатываемых в метан для энергетической замены природного газа. Большое распространению получает использование биомассы для получения электроэнергии. Большое внимание приобрела «океанотермическая энергоконверсия» (ОТЭК), то есть получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосами глубинными океанскими водами, например, при использовании в замкнутом цикле турбины таких легко испаряющихся жидкостей, как пропан, фреон или аммоний.
Большие запасы энергии содержаться в местах впадения пресноводных рек в моря и соленые водоемы. При наличии перепадов солености возникает осмотическое давление, которое может быть использовано для производства энергии, например, с помощью мембранных установок и другими способами. Остается заманчивой идея использования потока теплой воды Гольфстрима, несущего ее вблизи берегов Флориды со скоростью 5 миль в час. Наконец, не следует забывать, что химическая формула воды НОН (Н2О) содержит газ водород, который после извлечения из воды может использоваться в качестве горючего для самолетов, автомобилей, автобусов, как используется в настоящее время для этих целей сжиженный газ, газ метан. И опыт использования водорода в качестве топлива уже есть. На базе кузова и шасси автобуса MERSEDES-BENZ создан электробус на топливных элементах, получивший название NEBUS. В качестве топлива для него используется водород, который размещается в баллонах, установленных на крыше автобуса. NEBUS тяжелее базового автобуса на 3500 кг. При этом масса баллонов с водородом составляет 1900 кг. Силовая установка машины разработана канадской компанией Ballard. По габаритам она примерно соответствует дизелю, применяемому на автобусе этого типа. Мощность батареи топливных элементов – 250 кВт, пробег – 200 км. Для приведения в движение автобуса, рассчитанного на 42 места, применяются асинхронные двигатели мощностью 75 кВт. Количество вредных выхлопных газов, уровень шума у него меньше, чем у автобусов аналогичного класса 1. Гидроэнергетика базируется на использовании возобновляемых гидроэнергетических ресурсов, представляющих собой преобразованную энергию Солнца. Например, в Норвегии более 90 % электроэнергии вырабатывается на ГЭС. Стоимость 1 кВт-ч этой энергии обычно не более 0,04 доллара США, и она легко регулируется по мощности. Наряду с преимуществами у ГЭС имеются и недостатки, которые в ряде случаев ограничивают возможности их строительства и использования. Прежде всего это экологический ущерб, связанный с заполнением водой больших площадей при создании водохранилищ. В процессе эксплуатации станций происходит заиливание водохранилищ и плотин, изменяется климат, нарушаются условия для миграции рыб и др. Для ГЭС также характерны большие капитальные затраты на строительство [13].
Наша республика – преимущественно равнинная страна. В Государственной программе отмечается, что потенциальная мощность всех водотоков Беларуси равна 850 МВт. Технически возможно использовать около 520 МВт, экономически целесообразно – 250 МВт. В качестве основных направлений гидроэнергетики в Беларуси определены реконструкция и восстановление существующих ГЭС и сооружение новых различной мощности. Гидроэлектростанции подразделяются: в конструктивном отношении по схеме и составу основных гидротехнических сооружений на приплотинные и деривационные, сооружаемые на крупных, средних и малых реках; в народнохозяйственном отношении на крупные, средние и малые; по величине напора на низконапорные, средненапорные и высоконапорные. Различают также гидроэлектростанции по характеру регулирования речного стока их водохранилищами: с длительным (многолетним, годовым и сезонным), краткосрочным (суточным или недельным) регулированием и совсем без регулирования. В приплотинных ГЭС водосток регулируется посредством плотин. В деривационных ГЭС большая или существенная часть напора создается посредством безнапорных или напорных деривационных водоводов. В качестве безнапорного деривационного водовода могут быть использованы каналы, лотки, безнапорные туннели или сочетание этих типов водоводов. С самого начала (примерно с 80-х годов прошлого столетия) для производства электроэнергии в гидроэнергетике использовались в основном гидравлические турбины. Энергетическая программа Республики Беларусь до 2010 г. в качестве основных направлений развития малой гидроэнергетики в стране предусматривает:
– восстановление ранее действовавших малых гидроэлектростанций на существующих водохранилищах путем капитального ремонта и частичной замены оборудования;
– строительство новых малых ГЭС на водохранилищах неэнергетического назначения без затопления;
– создание малых ГЭС на промышленных водосбросах;
– сооружение бесплотинных (русловых) ГЭС на реках со значительными расходами воды.
Общую мощность малых ГЭС в республике предполагается довести к 2010 г. до 100 МВт. Бассейны рек Западная Двина и Неман, протекающих по территории Беларуси, относятся к зонам высокого гидроэнергетического потенциала, и использование его еще в 40-х годах XX в. намечалось путем строительства многоступенчатых каскадов ГЭС. Гидроресурсы Беларуси оцениваются в 850-1000 МВт.
Дата добавления: 2017-01-08; просмотров: 2694;