ОСУШКА ГАЗА ОХЛАЖДЕНИЕМ
Охлаждение широко применяется для осушки газа, выделения конденсата из газа газоконденсатных месторождений на установках низкотемпературной сепарации, а также для получения индивидуальных компонентов газа, выделения из природного газа редких газов, сжижения газов и т. д. Низкотемпературный способ разделения газов позволяет в зависимости от глубины охлаждения извлекать от 80 до 100 % тяжелых углеводородов и осушать газ при транспортировке однофазного компонента до необходимой точки росы по влаге и углеводородам. На практике применяют низкотемпературную сепарацию (НТС), при которой получают относительно невысокие температуры как за счет использования пластового давления, так и искусственного холода. Детандер (поршневой или турбинный) позволяет получить более глубокое охлаждение газа, а также продлить срок службы установок НТС. Применение искусственного холода (холодильных машин) в установках НТС позволяет обрабатывать газ до конца разработки месторождения, но при этом капитальные вложения в обустройство промысла увеличиваются в 1,5 — 2,5 раза [39].
Принципиальная технологическая схема НТС приведена на рис. 4.18. Сырой газ из скважины поступает на установку комплексной подготовки, где после предварительного дросселирования (или без него) направляется в сепаратор первой ступени 3 для отделения от капельной жидкости. Затем газ направляется в теплообменник 5 для охлаждения газом, поступающим в межтрубное пространство из низкотемпературного сепаратора 7. Из теплообменника газ поступает через эжектор 6 или штуцер в низкотемпературный сепаратор 7, в котором за счет понижения температуры в теплообменнике и на штуцере (эжекторе) выделяется жидкость. Осушенный газ поступает в теплообменник 5, охлаждает продукцию скважины и направляется в промысловый сборный коллектор. Нестабильный конденсат и водный раствор ингибитора (например, диэтиленгликоля ДЭГ), предотвращающий образование гидратов, из сепаратора первой ступени 3 поступают в конденсатосборник 4 и далее в емкость 10. Здесь происходит разделение конденсата и водного раствора ДЭГа. Затем конденсат через теплообменник 9 подается в поток газа перед низкотемпературным сепаратором, а водный раствор ДЭГа направляется через емкость 11 и фильтр 12 для очистки от механических примесей в регенерационную установку 13, после чего регенерированный гликоль из установки с помощью насоса 19 подается в шлейфы для предотвращения образования гидратов в них. Поток нестабильного углеводородного конденсата и водного раствора ДЭГ направляется в разделительную емкость 15 через межтрубное пространство теплообменников, где охлаждает нестабильный конденсат, поступающий из емкости 10 для впрыскивания в газовый поток.
Водный раствор гликоля через фильтр поступает в установку регенерации 14, после чего насосом 19 подается в газовый поток перед теплообменником 5. Конденсат из разделительной емкости 15 направляется через межтрубное пространство теплообменника 18 в деэтанизатор 16. Установка деэтанизации состоит из тарельчатой колонны, печи 17 и теплообменника 18. Заданная температура в нижней части деэтанизатора поддерживается с помощью теплообменника18, в котором стабильный конденсат (нижний продукт деэтанизатора), подогретый в печи 17 до температуры 433 К, отдает тепло насыщенному конденсату, поступающему из емкости 15. Охлажденный стабильный конденсат подается в конденсатопровод. По схеме предусматривается также ввод части холодного нестабильного конденсата на верхнюю тарелку стабилизатора. В этом случае деэтанизатор работает в режиме абсорбционноотпарной колонны.
Рис. 4.18. Технологическая схема НТС на газосборном пункте |
Если предусматривается транспортировка конденсата в железнодорожных цистернах, то стабилизация конденсата проводится в ректификационной колонне, работающей в режиме либо частичной, либо полной дебутанизации. Газ выветривания (дегазации) из емкости 15 и газ деэтанизатора 16 через штуцер поступает в общий поток.
Если давление невысокое, то предусматривают компрессор 8. Газ дегазации из емкости 10 также возвращается в общий поток. Периодический контроль за дебитами газа и жидкости осуществляется с помощью сепаратора 1, на выкидной линии которого установлены замерная диафрагма и конденсатосборник-разделитель 2 со счетчиками.
Если на устье скважины температура газа достаточно высокая и на его пути до газосборного пункта гидраты не образуются, то схема подготовки газа упрощается. На период добычи, когда требуются дополнительные источники холода на установке НТС для обеспечения требуемой точки росы газа, в схеме вместо штуцера устанавливают турбодетандер. При использовании турбодетандера эффект по снижению температуры в 3 — 4 раза больше, чем при обычном дросселировании. В этом случае в схеме предусматривается сепаратор второй ступени, предназначенный для отделения жидкости от газа, поступающего в турбодетандер. Осушенный газ из межтрубного пространства теплообменника 5 поступает на прием компрессора, установленного на одном валу с турбодетандером, и далее в промысловый коллектор.
Возможны модификации описанной схемы в соответствии с конкретными условиями. В частности, дополнительно к теплообменнику 5 устанавливают воздушный или водяной холодильник. По мере снижения пластового давления для поддержания постоянной температуры сепарации газа на установках НТС требуется последовательное увеличение поверхности теплообменников, что приводит к необходимости перестройки установки. Однако наступает такой период, когда это становится нерациональным. В таком случае производится охлаждение либо применяют другие способы подготовки газа.
Эффективность работы НТС любого типа существенно зависит от технологического режима эксплуатации скважины. В проектах разработки за оптимальное давление сепарации на газоконденсатных месторождениях принимается давление максимальной конденсации, которое для каждого состава газа определяется экспериментальным путем. Для обеспечения однофазного движения газа по магистральному газопроводу температура сепарации выбирается с учетом теплового режима работы газопровода.
Дата добавления: 2016-12-27; просмотров: 3696;