Классификация и технологические свойства пластмасс.


Пластическими массами (пластмассами) называют материалы, основу которых составляют природные или синтетические высокомолекулярные соединения. Высокомолекулярные соединения состоят из большого числа низкомолекулярных соединений (мономеров), связанных между собой силами главных валентных связей. Соединения, большие молекулы (макромолекулы) которых состоят из одинаковых структурных звеньев, называют полимерами. Макромолекулы полимеров могут иметь линейную форму, разветвленную и пространственную (сшитую).

Линейные макромолекулы (рис.1,а) имеют форму цепей, в которых атомы соединены между собой ковалентными связями. Отдельные цепи связаны межмолекулярными силами, в значительной степени определяющими свойства полимера.

Полимеры с линейной структурой молекул хорошо растворяются, так как молекулы растворителя могут внедряться в промежутки между макромолекулами и ослаблять межмолекулярные силы.

Наличие в цепях разветвлений (рис.1,б) приводит к ослаблению межмолекулярных сил и тем самым к снижению температуры размягчения полимера.

Пространственные структуры (рис.1,в) получаются в результате химической связи (сшивки) отдельных цепей полимеров либо в результате поликонденсации или полимеризации. Большое значение для свойств этих полимеров имеет частота поперечных связей. Если эти связи располагаются сравнительно редко, то образуется полимер с сетчатой структурой. При частом расположении связей полимер становится практически не растворимым и неплавким.

Рис. 1. Схемы строения молекул полимеров

 

Полимеры в зависимости от расположения и взаимосвязи макромолекул могут находиться в аморфном (с неупорядоченным расположением молекул) или кристаллическом (с упорядоченным расположением молекул) состоянии. При переходе полимеров из аморфного состояния в кристаллическое повышаются их прочность и теплостойкость. Значительное влияние на полимеры оказывает теплота. В зависимости от поведения при повышенных температурах полимеры подразделяют на термопластичные (термопласты) и термореактивные (реактопласты).

Термопласты при нагреве размягчаются и расплавляются и при охлаждении вновь восстанавливают свои свойства. Переход термопластов из одного физического состояния в другое может осуществляться неоднократно без изменения химического состава. Термопласты имеют линейную или разветвленную структуру молекул.

Реактопласты при нагреве в результате химических реакций (отверждения) переходят в необратимое состояние. Отвержденные реактопласты нельзя повторным нагревом перевести в вязкотекучее состояние. В процессе полимеризации под действием указанных факторов линейная структура полимера превращается в пространственную. Отдельные виды термореактивных смол (эпоксидные, полиэфирные) при введении в них отвердителя отверждаются при нормальной температуре.

Поведение термопластов и реактопластов под действием теплоты имеет решающее значение при технологическом процессе переработки пластмасс.

В зависимости от числа компонентов все пластмассы подразделяются на простые и композиционные. Простые (полиэтилен, полистирол и т.д.) состоят из одного компонента - синтетической смолы, композиционные (фенопласты, аминопласты и другие) - из нескольких составляющих, каждая из которых выполняет определенную функциональную роль. В композиционных пластмассах смола является связующим для других составляющих. Свойства связующего во многом определяют физико-механические и технологические свойства ПКМ. Большинство смол хорошо смачивают поверхность наполнителя. Содержание связующего в пластмассах достигает 30...70%.

Помимо связующего в состав композиционных пластмасс входят следующие компоненты: 1) наполнители различного происхождения для повышения механической прочности, теплостойкости, уменьшения усадки и снижения стоимости композиции; органические наполнители - древесная мука, хлопковые очесы, целлюлоза, хлопчатобумажная ткань, бумага, древесный шпон и другие; неорганические - графит, асбест, кварц, стекловолокно, стеклоткань, волокна углерода, бора и другие; 2) пластификаторы (дибутилфталат, касторовое масло и другие), увеличивающие эластичность, текучесть, гибкость и уменьшающие хрупкость пластмасс; 3) смазочные вещества (стеарин, олеиновая кислота и другие), увеличивающие текучесть, уменьшающие трение между частицами композиции, устраняющие прилипание к формообразующим поверхностям пресс-форм; 4) катализаторы (известь, магнезия и другие), ускоряющие процесс отверждения материала; 5) красители (сурик, нигрозин и другие), придающие нужный цвет изготовляемым деталям.

При изготовлении газонаполненных пластмасс (поро- и пенопластов) в полимеры вводят газообразователи - вещества, которые при нагреве разлагаются с выделением газообразных продуктов.

Конструкционные пластмассы в зависимости от показателей механической прочности подразделяют на три основные группы: низкой, средней и высокой прочности.

Основными технологическими свойствами пластмасс являются текучесть, усадка, скорость отверждения (реактопластов) и термостабильность (термопластов).

Текучесть - способность материалов заполнять форму при определенных температуре и давлении. Она зависит от вида и содержания в материале смолы, наполнителя, пластификатора, смазочного материала, а также от конструктивных особенностей пресс-формы. Для ненаполненных термопластов за показатель текучести принимают “индекс расплава” - количество материала, выдавливаемого через сопло диаметром 2,095 мм при определенных температуре и давлении в единицу времени.

Под усадкой понимают уменьшение размеров детали по сравнению с размером полости пресс-формы. Величина усадки зависит от физико-химических свойств связующей смолы, количества и природы наполнителя, содержания в нем влаги и летучих веществ, температурного режима переработки и других факторов. Усадку необходимо учитывать при проектировании формообразующих размеров пресс-формы.

Продолжительность процесса перехода реактопластов из вязкотекучего состояния в состояние полной полимеризации определяется скоростью отверждения, которая зависит от свойств связующего (термореактивной смолы) и температуры переработки. Низкая скорость отверждения увеличивает время выдержки материала в пресс-форме под давлением и снижает производительность процесса. Повышенная скорость может вызвать преждевременную полимеризацию материала пресс-формы, в результате чего отдельные участки формующей полости не будут заполнены пресс-материалом.

Под термостабильностью понимают время, в течение которого термопласт выдерживает определенную температуру без разложения. Высокую термостабильность имеют полиэтилен, полипропилен, полистирол и др. Переработка их в детали сравнительно проста. Для материалов с низкой термостабильностью (полиформальдегид, поливинилхлорид и другие) необходимо предусматривать меры, предотвращающие возможность разложения их в процессе переработки: например, увеличение сечения литников, диаметра цилиндра и т.д.

В зависимости от физического состояния, технологических свойств и других факторов все способы переработки пластмасс в детали подразделяют на следующие основные группы: переработка в вязкотекучем состоянии (прессованием, литьем под давлением, выдавливанием); переработка в высокоэластичном состоянии (пневмо- и вакуум-формовкой, штамповкой); получение деталей из жидких пластмасс различными способами формообразования; переработка в твердом состоянии разделительной штамповкой и обработкой резанием; получение неразъемных соединений сваркой, склеиванием; различные способы переработки (спекание, напыление и другие).

 



Дата добавления: 2016-12-16; просмотров: 2455;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.