Каротаж сопротивления нефокусированными зондами


Под каротажем сопротивления нефокусированными зондами понимают электрический каротаж, основанный на измерении кажущегося удельного сопротивления горных пород трех электродными нефокусированными зондами.

Для определения удельного сопротивления горных пород в скважине используется источник тока, создающий в окружающей среде электрическое поле.

Электрическое поле характеризуется напряженностью Е, которая является вектором имеющим величину и направление, в системе СИ (В/м).

Величина , характеризующая быстроту изменения потенциала при перемещении в направлении, перпендикулярном к эквипотенциальным поверхностям в сторону его увеличения, называется градиентом потенциала и обозначается gradU. Напряженность поля – градиент потенциала с обратным знаком, т.е.

Е=-qradU, (62)

знак минус указывает, что напряженность Е направлена в ту сторону, в которую действует сила на положительный заряд, т.е. в сторону убывания потенциала.

Для замера сопротивления пород, пересеченных скважиной, используют 4-х электродную установку AMNB. Три электрода этой установки (A,M,N или M, A, B), присоединены к концам кабеля и опускаемые в скважину, представляют каротажный зонд. Четвертый электрод В или N (заземление) устанавливают на поверхности вблизи устья скважины.

 

4.1.Измерение кажущегося удельного сопротивления обычными зондами

 

Для замера сопротивления пород, пересеченных скважиной, используют 4-х – электродную установку AMNB. Три электрода этой установки (A, M, N или M, A, B), присоединенные к концам кабеля и опускаемые в скважину, представляют собой каротажный зонд. Четвертый электрод В или N (заземление) устанавливают на поверхности вблизи устья скважины

(рис.
 
 

1).

Рис. 1.

 

Через электроды А и В или (M и N) согласно принципу взаимности, пропускают ток J, создающий электрическое поле в породе; (А и В называются токовые электроды) при помощи измерительных электродов M и N регистрируют разность потенциалов ΔU между двумя точками этого электрического поля.

Потенциал в точке М:

(63)

потенциал в точке N:

(64)

Для точечных электродов зонда, разность потенциалов между его измерительными электродами M и N будет равна

(65)

где

AN - AM = MN.

Тогда

(66)

Из (66) удельное сопротивление однородной среды

(67)

Разность потенциалов выражается в (мВ) милливольтах, сила тока в миллиамперах (мА), расстояния между МN, АМ и AN в метрах (м), а удельное сопротивление в ом-метрах (Ом·м).

Формулу (67) представив в виде в котором она выражается в практике электрического каротажа.

Для этого

(68)

получим

(69)

где k – коэффициент зонда, зависящий от расстояний АМ, AN и взаимного расположения электродов; ΔU/J представляет собой сопротивление части среды, заключенной между двумя эквипотенциальными поверхностями, проходящими через точки M и N.

Выражение (69) справедливо для вычисления истинного удельного сопротивления ρ изотропной и однородной среды. При этом условии значение удельного сопротивления должно оставаться постоянным при любых расстояниях АМ и АN.

При каротаже всегда имеем дело с неоднородной средой, состоящей из пластов различного удельного сопротивления и промывочной жидкости, заполняющей скважину. В этих условиях результат (69) является условным (фиктивным) и назван кажущимся удельным сопротивлением (ρк). Кажущееся удельное сопротивление зависит от следующих факторов: удельного сопротивления и мощности пластов, против которых находится каротажный зонд, диаметра скважины и удельного сопротивления заполняющей ее промывочной жидкости, глубины проникновения фильтрата промывочной жидкости в пласт, характера взаимного залегания и сопротивления смежных пластов, типа и размера зонда, которым проводят измерения.

При каротаже применяют зонды двух типов: градиент – зонды и потенциал – зонды.

Градиент зондами называют зонды, у которых расстояние между парными электродами M и N или А и В мало по сравнению с расстоянием непарных электродов А и М или М и А. Замер кажущихся сопротивлений этим зондом сводится к измерению градиента – потенциала электрического поля электрода А. При бесконечно малом MN формулу (67) можно записать так:

(70)

где Е - составляющая напряженности электрического поля по оси z в точке 0 или градиент потенциала с обратным знаком.

Потенциал-зондами называются те, у которых расстояние АМ мало по сравнению с расстоянием между парными электродами М, N (А, В). Расстояние АМ является размером потенциал – зонда. Замер кажущегося сопротивления относится к середине АМ. Тогда кажущееся сопротивление в этом случае будет

(71)

Потенциал – зонд с электродом N, удаленным в бесконечность, называется идеальным. Если АN = , MN= , UM = 0, то

(72)

Кажущееся сопротивление при использовании потенциал – зонда определяется потенциалом электрического поля в точке М. Поэтому зонды такого типа и называют потенциал – зондами.

Радиус исследования зонда – радиус сферы в однородной среде неограниченной мощности, оказывающей на показания зонда такое же влияние, как и та часть сферы, которая, которая расположена за ее пределами. Таким образом, радиус исследования градиент – зондом совпадает с его размером АО, а потенциал – зондом соответствует его удвоенному размеру, т.е. 2АМ. При одинаковом размере зондов радиус исследования потенциал зонда примерно в 2 раза превышает радиус исследования градиент зонда.

Зонд с одинаковым питающим электродом и двумя измерительными называется однополюсным (или зондом прямого питания), а с двумя питающими электродами и одним измерительным – двух полюсным (или взаимного питания). Коэффициент k при 2-х полюсном зонде вычисляется по формуле:

(73)

Пример обозначения зонда: М 2,5 А 0,25 В – обозначает градиент зонд двух полюсный подошвенный, у которого верхний электрод является измерительным; 2,5 м ниже него расположен первый токовый электрод А и на расстоянии 0,25 м от первого токового электрода – второй токовый В электрод. Длина зонда АО = 2,625 м.

 

Кривые кажущегося удельного сопротивления

против ограниченной мощности

 

Величина кажущегося удельного сопротивления, определяющая форму кривой КС, зависит от мощности пласта, типа и размера зонда, его положения относительно границ пласта. Принято считать пласт мощным, если его размер превышает размер зонда, тонким, если его мощность меньше или равна его размерам. Если удельное сопротивление пласта соответственно больше или меньше удельного сопротивления вмещающей среды, то пласт квалифицируют как пласт высокого или низкого сопротивления.

Градиент – зонд.

Пласт высокого сопротивления.

На кривой КС такой пласт отмечается асимметричным максимумом. При замерах подошвенным градиент – зондом кровля пласта соответствует минимальному, а подошва – максимальному сопротивлению. В действительности для реального зонда граница подошвы пласта фиксирует ниже максимума на половину расстояния между сближенными электродами. Тонкому пласту соответствует максимум со слабо выраженной асимметрией. Кровля его находится против точки наиболее крутого подъема кривой, а подошва – ниже максимума. Ниже подошвы пласта на длину зонда наблюдается повышение сопротивления, вызванное экранным максимумом. (рис. 1).

Пласт низкого сопротивления.

Мощный пласт фиксируется на кривой сопротивления асимметричным минимумом. При замерах подошвенным градиент – зондом кровля пласта приблизительно отмечается максимумом, а точнее – ниже него на половину расстояния между сближенными электродами, подошва – минимумом. Для тонких пластов подошва на кривой КС фиксируется по переходу кривой сопротивления от пониженных значений к максимальным (рис. 1, в).

При измерениях кровельным градиент – зондом кривые сопротивления являются зеркальным отражением кривых, полученных подошвенным градиент – зондом. Определение границ пласта кровельным градиент – зондом производится по тем же правилам, что и в случае подошвенного, но с учетом обратного хода кривой.

Потенциал – зонд.

Пласт высокого сопротивления.

Пласт мощный отмечается на кривой КС максимумом, симметричным относительно середины пласта. Его границы проводятся симметрично относительно максимума, кровля – на половину длины зонда выше точки перехода от плавного к более крутому подъему кривой, а подошва – на ту же величину ниже этой точки.

Тонкий пласт высокого сопротивления фиксируется снижением сопротивления; некоторое повышение последнего наблюдается выше кровли и ниже подошвы пласта на расстояниях, равных половине длины зонда из – за экранных явлений (рис. 1, б).

 
 

Рис. 1. Кривые сопротивления для однородного пласта с большим (а, б) и малым (в, г) сопротивлениями

а, в – подошвенный градиент-зонд; б, г – потенциал-зонд

Пласт низкого сопротивления.

Такой пласт на кривой кажущегося сопротивления отмечается минимумом, симметричным относительно середины пласта. Его границы проводятся по точкам перехода от крутого спада к плавному пониженному участку кривой с учетом того, что эти точки смещены относительно кровли и подошвы на половину длины зонда. Таким образом, ширина минимума превышает мощность пласта на длину зонда.

Выделение границ тонкого пласта малого сопротивления в этом случае затруднительно (см. рис. 1, г).

При чередовании пластов, имеющих различные сопротивления, обычное распределение плотности пока в скважине нарушается, происходит перераспределение силовых линий тока и возникают явления экранирования, которые оказывают влияние на величины кажущихся сопротивлений и должны учитываться при интерпретации кривых кажущихся сопротивлений.

 

Боковое каротажное зондирование

 

Результаты расчета кажущегося удельного сопротивления для пласта неограниченной мощности представлены в виде кривых, выражающих зависимость ρк от различных определяющих его параметров: а) для непроницаемого пласта – от удельных сопротивлений пласта ρп и промывочной жидкости ρс, диаметра скважины dс и длины зонда Lз ; б) для проницаемого пласта при наличии зоны проникновения, кроме перечисленных параметров, - от удельного сопротивления зоны проникновения rзп и ее диаметра D. Эти кривые называются кривыми бокового каротажного зондирования (БКЗ). Такие кривые, сгруппированные по определенному признаку (двухслойные, трехслойные) и выражающие зависимость rк/rc от L/dc для пласта неограниченной мощности, называются палетками БКЗ. Различают кривые БКЗ двух основных типов – 2-х слойные и трехслойные.

Двухслойные кривые БКЗ рассчитаны для условий, когда проникновение промывочной жидкости в пласт отсутствует. При этом важны следующие случаи: а) сопротивление промывочной жидкости, заполняющей скважину, меньше сопротивления пласта (rс < rп); б) сопротивление жидкости больше сопротивления пласта (rс > rп).

Двухслойные расчетные кривые БКЗ сгруппированы в палетки, обозначаемые БКЗ – 1А (при rп > rc) и БКЗ – 15 (при rп < rс), [рис.1а, б].

Как видно, кривые палеток БКЗ – 1 в своей правой части асимптотически приближаются к значениям удельного сопротивления пласта. Изображенная на палетке кривая А характеризует геоиетрическое место точек пересечения кривых БКЗ с их правыми асимптотами, кривая В – геометрическое место точек (максимумов и минимумов) кривых. Двухслойные кривые БКЗ обозначают одним относительным параметром rп/rc, который называется модулем кривой БКЗ и является ее шифром.

Трехслойные кривые БКЗ рассчитаны для случая проникновения промывочной жидкости в пласт. При этом в примыкающей к скважине части пласта образуется зона проникновения, условно принимаемая за цилиндрическую, диаметром D и удельным сопротивлением rзп с промежуточным значением между rс и неизменной части пласта rп. Трехслойные кривые БКЗ определяются пятью параметрами rп, rзп, rс, D и dс. Их форма и положение на палетках зависят от трех относительных параметров rзп /rc, D/dc, rп /rc.

При проникновении фильтрата промывочной жидкости в пласт возможны два случая: снижение удельного сопротивления (понижающее проникновения), увеличение его сопротивления (повышающее проникновение). Если rп /rзп < 1, то наблюдается повышающее проникновение, при rп /rзп > 1 – понижающее.

Каждая кривая на трехслойной палетке БКЗ изображает зависимость rк /rc от Lз/dc при заданных параметрах D/dc, rзп /rc и rп /rc, из которых два первых отражают шифр палетки, а третий – шифр кривой. Например, палетка БКЗ с шифром 4/20 означает, что на ней представлен набор кривых зависимости rк /rc от Lз/dc при D/dc= 4 и rзп /rc = 20 (рис. 3). При повышающем проникновении фильтрата промывочной жидкости в пласт удовлетворяется условие rс<rзп>rп (рис.3, 1 ) при понижающем rс<rзп<rп (см. рис.3, 2).

 

Обработка материалов БКЗ.

 

Боковое каротажное зондирование (БКЗ) проводят для определения истинного удельного сопротивления пластов и выявления проникновения фильтрата промывочной жидкости в пласт.

Для пластов большей мощности целесообразнее строить кривые зондирования по средним или оптимальным значениям КС. Для пластов средней мощности высокого сопротивления (6 < h < 20 м) используют средние и максимальные значения, а иногда для уточнения и оптимальные значения КС. Последние могут быть отсчитаны для зондов, размеры которых не превышают 0,8 мощности пласта. Для пластов малой мощности высокого сопротивления (h<6 м ) строят экстремальные кривые зондирования.

Различают теоретические или расчетные и фактические кривые БКЗ. Теоретическими называют кривые, построенные на основании расчетных данных при помощи сеточного моделирования или графоаналитическим методом (рис. 1, 2, 3). Фактическими называются кривые зондирования, построенные по средним или оптимальным значениям КС, отсчитанным на каротажных диаграммах против однородных пластов большей мощности (h>15–20м). Такие пласты приравниваются к пластам неограниченной мощности, и кривые зондирования для них соответствуют кривым БКЗ и интерпретируются путем непосредственного их сравнения с теоретическими кривыми БКЗ.

Для интерпретации БКЗ пластов средней мощности используют фактические кривые БКЗ, построенные по специальной методике, разработанной С.Г. Комаровым. Эти кривые отображают зависимость rк=f(АО) для пластов, аналогичных по удельному сопротивлению исследуемым, но неограниченной мощности.

Для интерпретации кривых БКЗ в пластах небольшой мощности, сопротивление которых превышает сопротивление вмещающих пород, принимают теоретические максимальные и экстремальные кривые зондирования – палетки ЭКЗ.

При интерпретации БКЗ фактическую или экстремальную кривую зондирования сравнивают с теоретическими, среди которых находят кривую, соответствующую интерпретируемой. Это позволяет считать, что интерпретируемая кривая имеет те же параметры, что и теоретическая. На основании этого определяют удельное сопротивление пласта и оценивают наличие или отсутствие проникновения промывочной жидкости в пласт, а при благоприятных условиях устанавливают глубину ее проникновения в пласт.

Полученную фактическую кривую БКЗ сопоставляют в начале с кривыми двухслойной палетки БКЗ-1 (рис. 1, 2). При этом бланк с фактической кривой БКЗ накладывают на палетку так, чтобы начала координат осей кривой и палетки совпадали. Если при этом фактическая кривая совмещается с одной из палеточных кривых или укладывается между двумя соседними расчетными кривыми БКЗ, повторяя их форму, то в пласте нет проникновения промывочной жидкости, фактическая кривая БКЗ является двухслойной. Удельное сопротивление такого пласта определяется в точке пересечения фактической кривой БКЗ и кривой А палетки.

Если же фактическая кривая БКЗ не совмещается ни с одной из двухслойных кривых БКЗ, то следует предположить наличие проникновения (понижающего или повышающего) промывочной жидкости в пласт. Отличить фактическую кривую БКЗ с повышающим проникновением промывочной жидкости от кривой, характеризующейся понижающим проникновением, относительно легко, если мощность пласта велика. Кривая соответствующая повышающему проникновению, отмечается крутым спадом после максимума. В случае понижающего проникновения фактические кривые БКЗ с увеличением размера зондов пересекают двухслойные расчетные кривые, переходя от кривых с меньшими значениями и кривым с большими величинами удельных сопротивлений.

В благоприятных условиях (мощный пласт среднего и низкого сопротивления), погрешность определения rп по БКЗ не превышает 10-20%. Неблагоприятными условиями для использования БКЗ являются: неоднородность разреза (тонкое чередование прослоев различного сопротивления); малое сопротивление ПЖ, когда rп/rc > 200 для мощных пластов и rп/rвм > 20 для тонких пластов.

 

Боковой каротаж.

 

Под боковым каротажем (БК) понимают каротаж сопротивления зондами с экранными электродами и фокусировкой тока. Он является разновидностью каротажа по методу сопротивления с использованием зондов, в которых электрическое поле является управляемым.

Различают боковой каротаж, выполняемый многоэлектродными (семь, девять электродов) и трех электродным зондом.

Семиэлектродный зонд состоит из центрального электрода А0, двух пар измерительных М1, М2, N1, N2 и одной пары токовых экранных электродов А1 и А2.

Электроды каждой пары соединены между собой и симметрично расположены относительно электрода А0. Через последний пропускают ток силы J0, который поддерживается постоянным в процессе регистрации. Через экранные электроды А1 и А2 протекает ток Jэ той же полярности, но такой силы, чтобы разность потенциалов между электродами М1 и N1 или M2, N2 равнялось нулю. Замеряют падение потенциала одного из измерительных электродов М1, М2 или N1, N2 относительно электрода N, удаленного на значительное расстояние от токовых электродов, чтобы избежать влияния их электрического поля. Выносить электрод N на поверхность не желательно из-за индуктивных помех.

 
 

Результат измерений зондом бокового каротажа относят к точке А0. За длину зонда Lз принимают расстояние между серединами интервалов М1N1 и М2N2 (точками О1 и О2). Расстояние между экранирующими электродами А1, А2 называют общим размером зонда Lобщ. Кроме того, для характеристики зонда введено понятие параметр фокусировки

Кажущееся удельное сопротивление пород находят по данным замера разности потенциалов DUкс и силы тока J0 через основной центральный электрод А0 по формуле (69). Для определения коэффициента зонда k исходят из известного положения, что в однородной и изотропной среде измеренное сопротивление соответствует истинному. При боковом каротаже благодаря наличию экранных электродов А1 и А2 токовые линии распространяются горизонтально в пределах слоя толщиной, равной приблизительно длине зонда (О1, О2).

Размещение электродов в семиэлектродном зонде выражается следующей записью: А0 0,2М1 0,2 N1 1,1А1, что соответствует Lобщ = 3 м, Lз = 0,6 м, q = 4. На диаграммах такой зонд обозначают как LA3q4.

 

Кривые сопротивления при БК

 

Кривые сопротивления, получаемые при БК, аналогичны кривым, регистрируемым в обычном каротаже потенциал – зондом, улучшения результатов измерений достигается благодаря фокусировке тока.

Расчет rк при БК сложен. При 7-ми электродном зонде необходимо определять после каждого из токовых электродов – основного и двух экранирующих, а также учитывать, что составляющая напряженности поля по оси скважины в области расположения измерительных электродов равна нулю. Электрическое поле 3-х - электродного зонда, представляющего собой поле длинного цилиндрического заземления, не менее сложно, поэтому кривые сопротивления БК и номограммы для определения удельного сопротивления строят по результатам моделирования на сеточной модели.

Кажущееся удельное сопротивление зависит от типа и характеристики зонда (Lобщ, Lз, q), удельных сопротивлений пласта, вмещающих пород, зоны проникновения, промывочной жидкости, а также геометрических размеров этих сред.

Против однородного пласта характерными (существенными) значениями кажущегося удельного сопротивления являются максимальное (пласт высокого сопротивления) и минимальное (пласт малого сопротивления). Против неоднородного пласта и пачки пластов в качестве существенных значений принимаются среднее ρк.ср и продольное ρк.пр (или среднегармоническое) кажущиеся сопротивления:

(74)


(75)

где h1, h2hn – мощность отдельных прослоев; - максимальное и минимальное кажущиеся удельные сопротивления против прослоев.

Величина ρк.ср часто определяется по кривой сопротивления путем графического осреднения. Задача облегчается, если кажущееся сопротивление ρк против прослоев отличается между собой меньше, чем на 25%. Для получения продольного кажущегося сопротивления (когда сопротивления прослоев отличаются между собой более чем на 25%) используется выражение (75).

На рис. 1 показаны характерные кривые сопротивления, записанные 3-х электродным и 7-ми электродным зондами при боковом каротаже. Из рис. 1 видно, что при одинаковом удельном сопротивлении вмещающих пород кривые КС против однородных пластов высокого сопротивления отмечаются максимумами, которые принимают формы острого пика против тонких пластов (h ≤ 4dc); против мощных пластов (h>16dc) наблюдается горизонтальный интервал в средней части. Если порода, подстилающая пласт и перекрывающая его, имеет различное сопротивление, max против пласта высокого сопротивления становится асимметричным, наблюдается снижение со стороны
 
 

породы меньшего сопротивления.

Рис. 1. Кривые сопротивления против одиночного пласта высокого сопротивления, полученные 3-х электродным (а) и 7-ми электродным (б) зондами бокового каротажа

а – Lобщ=15dc; Lз=0,75dc; dз=0,43dc; б - Lобщ=8,25dc; Lз=2,37dc; q=2,47

 

Границы пластов по кривым сопротивления полученным зондом БК-3 (рис. 1, а) соответствуют точкам на спаде кривой с определенным значением кажущегося удельного сопротивления (граничного сопротивления rк.гр) Величина rк.гр зависит в общем случае от rвм, а для понижающего проникновения D. Определить местоположение точки с сопротивлением rк.гр визуально сложно, так как эта точка не является характерной для кривой сопротивления.

Для получения rк.гр применительно к кривым, записанным зондом аппаратуры АБК-3, используют график (рис. 2). При неодинаковом сопротивлении покрывающих и подстилающих пород rк.гр определяют относительно для кровли и подошвы пласта. Если отношение rп/rвм или rзп/rвм меньше двух, кривая сопротивления (dк) выполаживается, и указанную методику выделения границ пласта применять нельзя.

Рис.2. Зависимость граничных значений кажущегося удельного сопротивления ρк.гр от удельного сопротивления вмещающей среды rвм. 1 - rк.гр для пластов высокого сопротивления без проникновения и с повышающим проникновением; rк.гр для пластов с понижающим проникновением: 2 – D = 2 dc; 3 – D = 8 dc.

Влияние проникновения фильтрата раствора на показания бокового каротажа зависит от характера и глубины проникновения его в пласт. Понижающее проникновение относительно мало сказывается на величине кажущегося удельного сопротивления и становится заметным лишь при больших (D/dc > 6) глубинах проникновения. Значительно большее влияние на показания БК оказывает повышающее проникновение, которое возрастает с увеличением D/dc и rзп/rп. При больших значениях этих величин (rзп/rп > 20 и D/dc > 4) rк определяется в основном влиянием зоны проникновения, которое, кроме того, возрастает с уменьшением мощности пласта. В случае повышающего проникновения, когда rзп>rп, ток, прежде чем достигнуть неизменной части пласта с сопротивлением rп, должен преодолеть большое сопротивление в зоне проникновения, что вызывает значительное, часто преобладающее, падение потенциала на этом участке пласта. В результате зона повышающего проникновения оказывает на показания БК решающее влияние. Если rзп мало по сравнению с rп (понижающее проникновение), то падение потенциала не велико, и влияние зоны проникновения на показания бокового каротажа снижается.

Боковой каротаж является более совершенным методом, чем каротаж сопротивлений обычными зондами. Он имеет ряд преимуществ при изучении пластов средней и малой мощности, в случае значительной дифференцированности разреза по сопротивлению и больших значений rп/rc, когда пласты, вскрываемые скважиной, имеют высокое сопротивление, а также при высокоминерализованной промывочной жидкости.

 

Резистивиметрия скважины.

 

Под резистивиметрией понимают измерение удельного электрического сопротивления жидкости, заполняющей скважину, с помощью скважинного резистивиметра. Если сопротивление жидкости определяют на поверхности, то приеняют лабораторный резистивиметр. Значение сопротивления ПЖ необходимы при вычислении истинных удельных сопротивлений пород на основании кажущихся. Сопротивление жидкости замеряют и при определении места притока воды в скважину. Удельное сопротивление жидкости сильно зависит от температуры. Скважинный резистивиметр представляет собой обычный каротажный зонд малых размеров (расстояние между электродами 2-3 см).

При перемещении резистивиметра по скважине жидкость свободно циркулирует через трубы, которая служит изолирующим экраном, исключающим влияние среды за пределами определяемого объема жидкости стенки скважины, обсадной колонны. Удельной сопротивление ПЖ находят по формуле (69). В результате замера на каротажной ленте регистрируется диаграмма сопротивления промывочной жидкости вдоль ствола скважины.

 

Микрокаротаж

 

Под микрокаротажем (МК) понимают каротаж сопротивления обычными градиент- и потенциал-зондами малых размеров, расположенными на прижимном изоляционном башмаке. При работе башмак с электродами прижимается пружинами к стенке скважины,чем достигаются частичное экранирование зонда от промывочной жидкости и уменьшение влияния ее на результат измерений. В средней части башмака микрозонда смонтированы три электрода А, М и N на расстоянии 25 мм друг от друга. Градиент-зонд (микрозонд) имеет обозначения А0,025М0,025N и потенциал- микрозонд А0,05М.

rк- рассчитывается по формуле (69), коэффициент микрозонда k определяется эксперементально. Глубина исследования для градиент-зонда 4 см и для потенциал-зонда 10-12 см. По замеру двух кривых сопротивления, зарегистрированных микрозондами с различными радиусами исследований, можно получить представление об удельном сопротивлении прилегающей к скважине части пласта и оценить влияние глинистой корки и слоя промывочной жидкости.

Интерпретация кривых МК заключается в детальном расчленении разреза, выделении в нем проницаемых и непроницаемых прослоев, определении удельного сопротивления промытой части пласта rпп.

Если против проницаемого пласта образуется глинистая корка, кажущееся сопротивление, измеряемые потенциал - микрозондом с заметно меньшим радиусом исследования. Такое превышение сопротивления получило название положительного расхождения (приращения). Оно характерно для проницаемых пластов. Положительное расхождение кривых сопротивления наблюдается также против непроницаемых пластов. Положительное расхождение кривых сопротивления наблюдается также против непроницаемых пластов высокого сопротивления (rп более чем в 25 – 30 раз превышает rс) из-за влияния глинистой пленки, заключенным между башмаком микрозонда и стенкой скважины. Пласт можно считать проницаемым, если имеет место положительное расхождение и удельное сопротивление его части, прилегающей к скважине, превышает сопротивление ПЖ не более чем в 2,5 раз. Положительное расхождение отмечается чаще всего в проницаемых песчано-алевролитовых пластах с глинистой коркой небольшой толщины и ее сопротивлением, в несколько раз меньшим rзп.

При наличии на стенке скважины толстой глинистой корки (свыше 2 см) КС, полученные обоими микрозондами, оказываются заниженными, близкими к сопротивлению глинистой корки, и положительно приращение не наблюдается.

В отдельных случаях сопротивления, измеренные градиент микрозондом, превышают сопротивления, полученные потенциал микрозондом, т.е. наблюдается отрицательное приращение, которое характерно для случаев, когда rс > rп.

Против глинистых пластов величины кажущихся сопротивлений, измеренные градиент – и потенциал – микрозондами, обычно совпадают и соответствуют удельному сопротивлению глин. При наличии против глинистого пласта каверн значительных размеров измеренные КС соответствуют чаще всего сопротивлению ПЖ.

 


 



Дата добавления: 2016-12-09; просмотров: 3571;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.032 сек.