Электроавтоматика: АВР, АПВ, АЧР, УРОВ


В данный раздел введены некоторые виды электроавтоматики, широко распространенные в электросетях. К ним относятся устройства автоматического повторного включения (АПВ), автоматического ввода резервного питания (АВР), автоматической частотной разгрузки (АЧР), устройство резервирования отказа выключателя (УРОВ) и другие.

АПВ

Многолетний опыт эксплуатации линий электропередачи показал, что значительная часть коротких замыканий (КЗ), вызванных перекрытием изоляции, схлестыванием проводов и другими причинами, при достаточно быстром отключении линий релейной защитой, самоустраняется. При этом электрическая дуга, возникшая в месте КЗ, гаснет, не успев вызвать существенных разрушений, препятствующих повторному включению линий под напряжение. Такие самоустраняющиеся повреждения принято называть неустойчивыми.

Статистические данные о повреждаемости линий электропередачи за длительный период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50–90%.

Учитывая, что отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, и что многие повреждения носят неустойчивый характер, обычно при ликвидации аварий оперативный персонал производит опробование линии путем включения ее под напряжение.

Операцию включения под напряжение отключившейся линии называют повторным включением. Линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому, повторные включения при неустойчивых повреждениях принято называть успешными.

Реже на линиях возникают такие повреждения, как обрывы проводов, тросов или гирлянд изоляторов, падение или поломка опор и т. д. Такие повреждения не могут самоустраниться, и поэтому их называют устойчивыми. При повторном включении линии, на которой произошло устойчивое повреждение с коротким замыканием, линия вновь отключается защитой. Поэтому, повторные включения линий при устойчивых повреждениях называют неуспешными.

Повторное неавтоматическое включение линий на подстанциях с постоянным оперативным персоналом или на телеуправляемых объектах занимает несколько минут, а на подстанциях не телемеханизированных и без постоянного оперативного персонала 0,5–1 час и более.

Поэтому, для ускорения повторного включения линий и уменьшения времени перерыва электроснабжения потребителей широко используются специальные устройства автоматического повторного включения (АПВ). Время действия АПВ обычно не превышает нескольких секунд. Поэтому, при успешном включении они быстро подают напряжение потребителям, чего не может обеспечить оперативный персонал.

Согласно Правилам устройства электроустановок (ПУЭ) обязательно применение АПВ – на всех воздушных и смешанных (кабельно-воздушных) линиях напряжением 1000 В и выше.

Автоматическое повторное включение восстанавливает нормальную схему также и в тех случаях, когда отключение выключателя происходит вследствие ошибки персонала, или ложного действия релейной защиты.

Наиболее эффективно применение АПВ на линиях с односторонним питанием, так как в этих случаях каждое успешное действие АПВ восстанавливает питание потребителей и предотвращает аварию.

В кольцевых сетях отключение одной из линий не приводит к перерыву питания потребителей. Однако и в этом случае применение АПВ целесообразно, так как ускоряет ликвидацию ненормального режима и восстановление нормальной схемы сети, при которой обеспечивается наиболее надежная и экономичная работа.

Опыт эксплуатации показал, что неустойчивые КЗ часто бывают не только на воздушных линиях, но и на шинах подстанций. Поэтому на подстанциях, оборудованных быстродействующей защитой шин, также применяются АПВ, которые производят повторную подачу напряжения на шины в случае их отключения релейной защитой.

Автоматическое повторное включение шин имеет высокую успешность и эффективность, поскольку каждый случай успешного действия предотвращает аварийное отключение целой подстанции, или ее части.

Устройствами АПВ оснащаются также все одиночно работающие трансформаторы мощностью 1000 кВА и выше, а так же, трансформаторы меньшей мощности, питающие ответственную нагрузку.

Автоматическое повторное включение трансформаторов выполняется так, что их действие происходит только при отключении трансформатора от максимальной токовой защиты. Повторное включение при повреждении самого трансформатора, когда он отключается защитами от внутренних повреждений, как правило, не производится. Успешность действия АПВ трансформаторов и шин так же высока, как у воздушных линий, и составляет 70–90%.

В ряде случаев АПВ успешно используются на кабельных и на смешанных кабельно-воздушных тупиковых линиях 6–10 кВ. При этом, несмотря на то, что повреждения кабелей бывают, как правило, устойчивыми, успешность действия АПВ составляет 40–60%.

Это объясняется тем, что АПВ восстанавливает питание потребителей при неустойчивых повреждениях на шинах, при отключении линий вследствие перегрузки, при ложных и неселективных действиях защиты. Применение АПВ позволяет в ряде случаев упростить схемы релейной защиты и ускорить отключение КЗ в сетях высокого напряжения, что также является положительным качеством этого вида автоматики.

В эксплуатации получили применение следующие виды АПВ:

- трехфазное, осуществляющее включение трех фаз выключателя после их отключения релейной защитой;

- однофазное, осуществляющее включение одной фазы выключателя, отключеннойрелейной защитой при однофазном КЗ;

- комбинированное, осуществляющее включение трех фаз (при междуфазныхповреждениях) или одной фазы (при однофазных КЗ).

Трехфазные АПВ в свою очередь подразделяются на несколько типов: простые (ТАПВ), быстродействующие (БАПВ), с проверкой наличия напряжения (АПВНН), отсутствия напряжения (АПВОН), с ожиданием синхронизма (АПВОС), с улавливанием синхронизма (АПВУС) и др.

По виду оборудования, на которое действием АПВ повторно подается напряжение, различают: АПВ линий, АПВ шин, АПВ трансформаторов, АПВ двигателей.

По числу циклов (кратности действия) различают: АПВ однократного действия и АПВ многократного действия.

Устройства АПВ, которые осуществляются с помощью специальных релейных схем, называются электрическими, а встроенные в грузовые или пружинные приводы – механическими.

Схемы АПВ, применяемые на линиях и другом оборудовании, в зависимости от конкретных условий, могут существенно отличаться одна от другой. Однако все они должны удовлетворять следующим основным требованиям:

1. Схемы АПВ должны приходить в действие при аварийном отключении выключателя (или выключателей), находившегося в работе. В некоторых случаях схемы АПВ должны отвечать дополнительным требованиям, при выполнении которых разрешается пуск АПВ: например, при наличии или, наоборот, при отсутствии напряжения, при наличии синхронизма, после восстановления частоты и т. д.

2. Схемы АПВ не должны приходить в действие при оперативном отключении выключателя персоналом, а также в случаях, когда выключатель отключается релейной защитой сразу же после его включения персоналом, т. е. при включении выключателя на КЗ, поскольку повреждения в таких случаях обычно бывают устойчивыми. В схемах АПВ должна также предусматриваться возможность запрета действия АПВ при срабатывании отдельных защит. Так, например, как правило, не допускается действие АПВ трансформаторов при внутренних повреждениях в них. В отдельных случаях не допускается действие АПВ линий при срабатывании дифференциальной защиты шин.

3. Схемы АПВ должны обеспечивать определенное количество повторных включений,

т. е. действие с заданной кратностью. Наибольшее распространение получили АПВ однократного действия. Применяются также АПВ двукратного, а в некоторых случаях и трехкратного действия.

4. Время действия АПВ должно быть минимально возможным, для того чтобы обеспечить быструю подачу напряжения потребителям и восстановить нормальный режим работы. Наименьшая выдержка времени, с которой производится АПВ на линиях с односторонним питанием, принимается 0,3–0,5 сек. Вместе с тем, в некоторых случаях, когда наиболее вероятны повреждения, вызванные набросами и касаниями проводов, передвижными механизмами, целесообразно для повышения успешности АПВ принимать увеличенные выдержки времени.

5. Схемы АПВ должны автоматически обеспечивать готовность выключателя, на который действует АПВ, к новому действию после его включения.

АВР

Схемы электрических соединений энергосистем и отдельных электроустановок должны обеспечивать надежность электроснабжения потребителей. Высокую степень надежности обеспечивают схемы питания одновременно от двух и более источников (линий, трансформаторов), поскольку аварийное отключение одного из них не приводит к нарушению питания потребителей.

Несмотря на эти очевидные преимущества многостороннего питания потребителей, большое количество подстанций, имеющих два источника питания и более, работает по схеме одностороннего питания. Одностороннее питание имеют также секции собственных нужд электростанций.

Применение такой, менее надежной, но более простой схемы электроснабжения во многих случаях оказывается целесообразным для снижения токов КЗ, уменьшения потерь электроэнергии в питающих трансформаторах, упрощения релейной защиты, создания необходимого режима по напряжению, перетокам мощности и т. п.

При развитии электрической сети одностороннее питание часто является единственно возможным решением, так как ранее установленное оборудование и релейная защита не позволяют осуществить параллельную работу источников питания.

Используются две основные схемы одностороннего питания потребителей при наличии двух или более источников.

В первой схеме один источник включен и питает потребителей, а второй отключен и находится в резерве. Соответственно первый источник называется рабочим, а второй – резервным.

Во второй схеме все источники включены, но работают раздельно на выделенных потребителей. Деление осуществляется на одном из выключателей.

Недостатком одностороннего питания является то, что аварийное отключение рабочего источника приводит к прекращению питания потребителей. Этот недостаток может быть устранен быстрым автоматическим включением резервного источника или включением выключателя, на котором осуществлено деление сети.

Для выполнения этой операции широко используется автоматическое включение резерва (АВР). При наличии АВР время перерыва питания потребителей в большинстве случаев определяется лишь временем включения выключателей резервного источника и составляет 0,3–0,8 сек.

Опыт эксплуатации энергосистем показывает, что АВР является весьма эффективным средством повышения надежности электроснабжения. Успешность действия АВР составляет 90-95%. Простота схем и высокая эффективность обусловили широкое применение АВР на электростанциях и в электрических сетях.

Все устройства АВР должны удовлетворять следующим основным требованиям:

1. Схема АВР должна приходить в действие в случае исчезновения напряжения на шинах потребителей по любой причине, в том числе при аварийном, ошибочном или самопроизвольном отключении выключателей рабочего источника питания, а также при исчезновении напряжения на шинах, от которых осуществляется питание рабочего источника. Включение резервного источника питания иногда допускается также при КЗ на шинах потребителя. Однако очень часто схема АВР блокируется, например, при работе дуговой защиты в комплектных распредустройствах. При отключении от МТЗ трансформаторов питающих шины НН, работе АВР, предпочтительна работа АПВ. Поэтому на стороне НН (СН) понижающих трансформаторов подстанций принимается комбинация АПВ-АВР. При отключении трансформатора его защитой от внутренних повреждений, работает АВР, а при отключении ввода его защитой – АПВ. Такое распределение предотвращает посадку напряжения, а иногда и повреждение секции, от которой осуществляется резервирование.

2. Для того чтобы уменьшить длительность перерыва питания потребителей, включение резервного источника питания должно производиться возможно быстрее, сразу же после отключения рабочего источника.

3. Действие АВР должно быть однократным для того, чтобы не допускать нескольких включений резервного источника на неустранившееся КЗ.

4. Схема АВР не должна приходить в действие до отключения выключателя рабочего источника для того, чтобы избежать включения резервного источника на КЗ в неотключившемся рабочем источнике. Выполнение этого требования исключает также возможное в отдельных случаях несинхронное включение двух источников питания.

5. Для того чтобы схема АВР действовала при исчезновении напряжения на шинах, питающих рабочий источник, когда его выключатель остается включенным, схема АВР должна дополняться специальным пусковым органом минимального напряжения.

6. Для ускорения отключения резервного источника питания при его включении на неустранившееся КЗ должно предусматриваться ускорение действия защиты резервного источника после АВР.

АЧР

Пока в энергосистеме имеется вращающийся резерв активной мощности, системы регулирования частоты и мощности должны поддерживать заданный уровень частоты. После того как вращающийся резерв будет исчерпан, дефицит активной мощности, вызванный отключением части генераторов или включением новых потребителей, повлечет за собой снижение частоты в энергосистеме.

Небольшое снижение частоты, на несколько десятых герца, не представляет опасности для нормальной работы энергосистемы, хотя и влечет за собой ухудшение экономических показателей. Снижение же частоты более чем на 1–2 Гц – представляет серьезную опасность и может привести к полному расстройству работы энергосистемы.

Это в первую очередь определяется тем, что при понижении частоты снижается скорость вращения электродвигателей, а, следовательно, снижается и производительность приводимых ими механизмов собственного расхода хода тепловых электростанций. Вследствие снижения производительности механизмов собственного расхода резко уменьшается располагаемая мощность тепловых электростанций, особенно электростанций высокого давления, что влечет за собой дальнейшее снижение частоты в энергосистеме. Это касается также и атомных электростанций. Таким образом, происходит лавинообразный процесс – «лавина частоты», который может привести к полному расстройству работы энергосистемы.

Процесс снижения частоты в энергосистеме сопровождается также снижением напряжения, что происходит вследствие уменьшения частоты вращения возбудителей, расположенных на одном валу с основными генераторами. Если регуляторы возбуждения генераторов и синхронных компенсаторов не смогут удержать напряжение, то также может возникнуть лавинообразный процесс – «лавина напряжения», так как снижение напряжения сопровождается увеличением потребления реактивной мощности, что еще более осложнит положение в энергосистеме.

Аварийное снижение частоты в энергосистеме, вызванное внезапным возникновением значительного дефицита активной мощности, протекает очень быстро, в течение нескольких секунд. Поэтому дежурный персонал не успевает принять каких-либо мер, вследствие чего ликвидация аварийного режима должна возлагаться на устройства автоматики.

Для предотвращения развития аварии должны быть немедленно мобилизованы все резервы активной мощности, имеющиеся на электростанциях. Все вращающиеся агрегаты загружаются до предела с учетом допустимых кратковременных перегрузок.

Поскольку вращающийся резерв невелик, он не может покрыть большой дефицит мощности, возникший в узле.

При отсутствии вращающегося резерва единственно возможным способом восстановления частоты является отключение части наименее ответственных потребителей. Это и осуществляется с помощью специальных устройств – автоматов частотной разгрузки (АЧР), срабатывающих при опасном снижении частоты.

Следует отметить, что действие АЧР всегда связано с определенным ущербом, поскольку отключение линий, питающих электроэнергией промышленные предприятия, сельскохозяйственных и других потребителей, влечет за собой недовыработку продукции, появление брака и т. п.

Несмотря на это, АЧР широко используется в энергосистеме как средство предотвращения значительно больших убытков из-за полного расстройства работы энергосистемы, если не будут приняты срочные меры по ликвидации дефицита активной мощности.

Глубина снижения частоты зависит не только от дефицита мощности в первый момент аварии, но и от характера нагрузки.

Потребление мощности одной группой потребителей, к которой относятся электроосветительные приборы и другие установки, имеющие чисто активную нагрузку, не зависит от частоты и при ее снижении остается постоянным. Потребление же другой группы потребителей – электродвигателей переменного тока при уменьшении частоты снижается.

Чем больше в энергосистеме доля нагрузки первой группы, тем больше понизится частота при возникновении одинакового дефицита активной мощности. Нагрузка потребителей второй группы будет в некоторой степени сглаживать эффект снижения частоты, поскольку одновременно будет уменьшаться потребление мощности электродвигателями.

Устройства АЧР должны устанавливаться там, где возможно возникновение значительного дефицита активной мощности во всей энергосистеме или в отдельных ее районах, а мощность потребителей, отключаемых при срабатывании АЧР, должна быть достаточной для предотвращения снижения частоты, угрожающего нарушением работы механизмов собственного расхода электростанций, что может повлечь за собой лавину частоты.

Устройства АЧР должны выполняться с таким расчетом, чтобы была полностью исключена возможность даже кратковременного снижения частоты ниже 45 Гц, время работы с частотой ниже 47 Гц не превышало 20 сек, а с частотой ниже 48,5 Гц – 60 сек. Допустимое время снижения частоты ниже 49 Гц по условиям работы АЭС равно 2 минуты.

Устройства АЧР, используемые для ликвидации аварийного дефицита активной мощности в энергосистемах, подразделяются на три основные категории.

Первая категория автоматической частотной разгрузки АЧРI быстродействующая (t=0,3÷0,5сек) с уставками срабатывания от 48,5 Гц (в отдельных случаях от 49,2÷49,3 Гц) до 46,5 Гц. Назначение очередей АЧРI – не допустить глубокого снижения частоты в первое время развития аварии. Уставки срабатывания отдельных очередей АЧРI отличаются одна от другой на 0,1 Гц. Мощность, подключаемая к АЧРI, примерно равномерно распределяется между очередями.

Вторая категория автоматической частотной разгрузки - АЧРII предназначена для восстановления частоты до длительно допустимого значения – выше 49,0 Гц. Вторая категория АЧР II работает после отключения части потребителей от АЧРI, когда снижение частоты прекращается, и она устанавливается на уровне 47,5÷48,5 Гц.

Кроме двух категорий автоматической частотной разгрузки – АЧРI и АЧРII в эксплуатации применяются некоторые другие очереди АЧР.

Спецочередь АЧР – имеющая уставки 49,2 Гц, 0,3–0,5 сек должна препятствовать понижению частоты ниже 49,2 Гц, а защитная очередь АЧР 49,1Гц 0,3–0,5 сек. не должна допустить снижения частоты ниже 49 Гц, опасной вследствие возможной разгрузки атомных электростанций и дальнейшего снижения частоты.

Все эти виды автоматики имеют название – противоаварийная режимная автоматика.

Нетрудно заметить изменение приоритетов в этой противоаварийной автоматике – она предназначена удержать нормальную работу системы за счет отключения потребителей. В конечном счете, пожертвовав частью потребителей, мы сохраняем в работе остальных. Нетрудно понять, что ни один из потребителей не хочет стать жертвой, за счет которой сохранятся остальные. Поэтому при выборе подключаемых к АЧР потребителей оценивается их значение – возникающий ущерб, снижение выпуска продукции, повреждение оборудования, опасность для жизни людей и т.д. Важен также порядок подключения потребителей к очередям АЧР: потребители, подключенные к очередям АЧР, имеющим более высокие уставки по частоте и меньшие выдержки времени, отключаются чаще.

УРОВ

УРОВ работает при отказе выключателя отходящей ячейки ЗРУ при отключении её защитами и действует на отключение вводного выключателя той секции, на которой произошел отказ. Если питание осуществляется через секционный выключатель, то действует на отключение секционного выключателя. Вводится накладкой. Уставка срабатывания 0,25с.

Схемы УРОВ стали широко внедряться в последние 15 - 20 лет.

Так, в ПУЭ издания 1965 г. установка УРОВ требовалась только в случаях, когда отказ защиты или выключателя на крупной или очень ответственной подстанции мог привести к особо тяжелым последствиям из-за неудовлетворительного дальнего резервирования, недопустимого по условиям устойчивости времени отключения.

В ПУЭ издания 1985 г. предполагается наличие УРОВ на объектах 110-500 кВ и дается только перечень редких исключений. Это объясняется следующими причинами:

1) в связи с укрупнением систем, появлением большого количества мощных узловых подстанций обеспечить дальнее резервирование через шины указанных подстанций стало затруднительно;

2) ужесточились требования быстрого отключения повреждений по условиям устойчивости генераторов и нагрузки;

3) получили широкое распространение отпаечные подстанции; обесточивание большого количества таких подстанций и соответствующих потребителей при действии защит в режимах дальнего резервирования не соответствует современным требованиям в части надежности и живучести энергосистем.

Устройства резервирования при отказе выключателей (УРОВ) должны предусматриваться в электроустановках 110-500 кВ. Допускается не предусматривать УРОВ в электроустановках 110-220 кВ при соблюдении следующих условий:

- обеспечиваются требуемая чувствительность и допустимые по условиям устойчивости времена отключения от устройств дальнего резервирования;

- при действии резервных защит нет потери дополнительных элементов из-за отключения выключателей, непосредственно не примыкающих к отказавшему выключателю (например, отсутствуют секционированные шины, линии с ответвлением).

Если защиты присоединены к выносным трансформаторам тока, то УРОВ должно действовать и при КЗ в зоне между этими трансформаторами тока и выключателем.

Допускается применение упрощенных УРОВ, действующих при КЗ с отказами выключателей не на всех элементах (например, только при КЗ на линиях); при напряжении 35-220 кВ, кроме того, допускается применение устройств, действующих лишь на отключение шиносоединительного (секционного) выключателя.

При недостаточной эффективности дальнего резервирования следует рассматривать необходимость повышения надежности ближнего резервирования в дополнение к УРОВ.



Дата добавления: 2021-02-19; просмотров: 1430;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.027 сек.