Тема №2: Электронные устройства.


Усилители различного назначения.

Усилитель — устройство, увеличивающее мощность (напряжение, ток) входного сигнала за счет энергии внешнего источника питания посредством усилительных элементов (полупроводниковых приборов, электронных ламп и др.).

На рис. 3.1. представлена структурная

схема включения усилителя в цепь усиления электрического сигнала,

где 1 — источник входного сигнала;

2 — усилитель;

3 — источник питания;

4 — нагрузка.

 

В качестве источника питания усилителя используют стабильные источники энергии постоянного тока. Источник входного Рис. 3.1сигнала (датчик) формирует изменяющееся во времени напряжение uвх (ток iвх) различной амплитуды, частоты и формы. Нагрузка усилителя — устройство, которое можно представить в виде линейного пассивного двухполюсника. Сам усилитель с парой входных и парой выходных зажимов обычно представляют в виде нелинейного четырехполюсника вследствие нелинейности характеристик входящих в него элементов.

Усиление входного сигнала по мощности (по напряжению, по току) происходит за счет преобразования электрической энергии источника питания в энергию выходного сигнала вследствие изменения сопротивления усилительных элементов (транзисторов, электронных ламп и др.) по закону, задаваемому входным сигналом.

Условное обозначение усилителей на схемах изображено на рис. 3.2. Напряжение входа uвх и напряжение выхода uвых измеряют относительно общего вывода (рис. 3.2, а).

При упрощенном изображении усилителя в виде прямоугольника, на нем изображают только вход и выход (рис. 3.2, б), опуская выводы напряжения питания Un и общий вывод.

Важнейшим параметром усилителя является коэффициент усиления по мощности, равный отношению изменения мощности выходного сигнала к изменению мощности входного сигнала, т. е.

 

Помимо коэффициента усиления по мощности вводят также:

коэффициент усиления по напряжению;

 

 

коэффициент усиления по току

 

Тогда коэффициент усиления по мощности Kp=KuKi . В некоторых схемах усиления один из двух коэффициентов (Ku или Ki) может быть меньше единицы.

Электронные усилители классифицируют по следующим признакам:

по усиливаемой величине: усилители напряжения (УН), тока (УТ),

мощности (УP);

по назначению: измерительные; для устройств теле и радиовещания; общепромышленного использования;

операционные, используемые в аналоговых и аналого-цифровых устройствах;

по характеру усиливаемых сигналов: усилители гармонических, импульсных и другой формы сигналов;

по частоте усиливаемых сигналов: усилители постоянного тока (УПТ); усилители звуковой частоты (УНЧ, f < 30 кГц); усилители высокой частоты (УВЧ, f < 300 МГц); усилители сверхвысокой частоты (УСВЧ, f < 300 ГГц);

по ширине частотного спектра выходного сигнала: широкополосные и узкополосные (резонансные); по схеме включения транзисторов: с общим эмиттером (ОЭ); с общей базой (ОБ);

с общим коллектором (ОК); с общим истоком (ОИ); с общим стоком (ОС); с общим затвором (ОЗ);

по количеству каскадов усиления: однокаскадные; многокаскадные (каскад предварительного усиления, промежуточные и выходной каскады);

по типу связи между каскадами и между оконечным каскадом и нагрузкой: резистивная (гальваническая), ёмкостная, трансформаторная.

У многокаскадного усилителя общий коэффициент усиления равен произведению коэффициентов усиления отдельных каскадов:

K = K1 ⋅K2 ⋅...⋅Kn.

На практике обычно используют логарифмическую (десятичную) меру оценки коэффициентов усиления, измеряемую в децибелах (дБ):

Kp(дБ) =10lg(Рвых /Рвх) =10lgKp ; Ku(дБ) =20lgKu и Ki(дБ) =20lgKi .

Например, для двухкаскадного усилителя с коэффициентами Ku1 =100 и Ku2 =10

Ku(дБ) =20lgKu1+20lgKu2=20⋅2+20⋅1=60дБ.

3.2 Характеристики усилителей

Важнейшими характеристиками усилителя являются амплитудная и частотные. Амплитудная характеристика описывает усилитель при фиксированной нагрузке и подаче на вход синусоидального напряжения фиксированной частоты:

uвх =Umsinωt, ω=const .

Амплитудная характеристика — это зависимость амплитуды (или действующего значения) выходного сигнала от амплитуды (или действующего значения) входного синусоидального сигнала, т. е. Uвых= f (Uвх).

Типичный вид амплитудной характеристики усилителя изображен на рис. 3.3.

Пунктиром показана амплитудная характеристика идеального усилителя. Отклонение реальной характеристики от идеальной объясняется наличием шумов и нелинейностям характеристик усилительных элементов при слабых и больших входных сигналах.

 

Динамическим диапазоном усилителя в децибелах называют отношение максимального значения входного напряжения к минимальному на линейном участке ab амплитудной характеристики (см. рис. 3.3):

 

Коэффициент усиления по напряжению на этом участке

 

Уровень шума — это отношение напряжения шумов Uш в режиме покоя (приведенного к входу усилителя) к максимальному значению выходного напряжения Uвых.max, выраженное в децибелах:

 

Коэффициент нелинейных искажений

 

где Um1 — амплитуда первой гармоники; Um2, Um3, ј — амплитуды высших гармоник выходного напряжения.

Частотные характеристики усилителя строят при фиксированной нагрузке и входном синусоидальном напряжении:

 

Амплитудно-частотная характеристика (АЧХ) — это зависимость коэффициента усиления, например, по напряжению Ku от частоты f входного сигнала.

Обычно АЧХ строят на двойной логарифмической сетке: по оси ординат откладывают значения Ku в децибелах, а по оси абсцисс — частоту в логарифмическом масштабе, однако около делений записывают значения частоты без логарифма (рис. 3.4).

 

 

 

Полоса пропускания усилителя определяет диапазон частот f (или w), в пределах которой коэффициент усиления на средней частоте не снижается ниже

своего уровня:

где fв и fн — верхняя и нижняя частоты среза АЧХ усилителя.

 

Фазочастотная характеристика (f) — зависимость угла сдвига фаз между выходным и входным напряжениями усилителя от частоты f (см. рис. 3.4). Фазовые искажения в усилителе отсутствуют, когда фазовый сдвиг линейно зависит от частоты.

Входное и выходное сопротивления усилителя:

 

Выходная мощность при сопротивлении нагрузки Rн

 

 

 

Типичная схема однокаскадного усилителя на биполярном транзисторе.

На принципиальной схеме усилителя на биполярном транзисторе VT, включенного по схеме с общим эмиттером (рис. 3.5), обозначено:

 

Ec, Rc и En, Rвт — источники входного сигнала и питания транзистора с соответствующими внутренними сопротивлениями;

uвх — напряжение входного сигнала;

RБ1 и RБ2 — резисторы делителя напряжения питания Un (обычно напряжение Un = 10-30 В), предназначенные для установки тока базы IБ транзистора (по постоянному току), т. е. рабочей точки (точки покоя) на линии нагрузки;

RЭ — резистор отрицательной обратной связи транзистора VT по постоянному току, подбором сопротивления которого обеспечивается температурная стабилизация его режима усиления. Так, при увеличении температуры возрастают постоянные составляющие токов коллектора IК и эмиттера IЭ и происходит падение напряжения RЭIЭ. В результате напряжение UБЭ уменьшается, что вызывает уменьшение тока базы IБ, и, следовательно, тока IК, стабилизируя его;

CЭ — конденсатор большой ёмкости (десятки микрофарад), шунтирующий сопротивление резистора RЭ по переменному току, что исключает ослабление усиливаемого сигнала по переменному току цепью обратной связи;

RК — нагрузочный резистор, сопротивление которого ограничивает ток коллектора IК транзистора VT;

С1 и С2 — разделительные конденсаторы входной и выходной цепей, обеспечивающие гальваническую развязку усилителя по постоянному току (предотвращающие прохождение постоянной составляющей тока от источника сигнала к усилителю и от усилителя к нагрузке).

Импульсные устройства[5].

Особенности и преимущества передачи информации в импульсном режиме.

В импульсной технике используются кратковременные, прерывистые электрические колебания. Импульсная техника служит, в частности, базой радиолокации, радионавигации, телевидения, многоканальной связи. На основе импульсной техники созданы современные ЭВМ.

К импульсным устройствам относят функциональные узлы, предназначенные для формирования импульсных сигналов требуемой формы и выполнения над ними различных операций и преобразований (интегрирования, дифференцирования, задержки по времени, изменения формы, длительности, селекции по амплитуде и т. п.).

Импульсными сигналами принято называть электрические колебания, существующие в пределах конечного отрезка времени. Электронные узлы (устройства) функционируют в импульсном режиме, при котором кратковременная работа устройства чередуется с паузой. Большую группу импульсных устройств составляют генераторы прямоугольных сигналов, для обозначения которых согласно ГОСТ 18682273 используют буквы ГГ,

например, К218ГГ1 серии 218, генераторы линейно изменяющихся сигналов обозначаются ГЛ, а генераторы смешанной формы — ГФ.

Группа импульсных устройств, работающих с одиночными прямоугольными импульсами, выделилась в самостоятельный класс цифровых устройств.

Отметим преимущества устройств, работающих в импульсном режиме, по сравнению с устройствами непрерывного действия:

в импульсном режиме достигается большая мощность в импульсе при малом

значении потребляемой средней мощности устройства;

меньшее влияние разброса параметров полупроводниковых элементов и температуры, так как они работают в ключевом режиме (включение — выключение);

большая пропускная способность передачи информации и лучшая помехоустойчивость (меньшее искажение информации);

удобство разработки сложных устройств на основе нескольких однотипных элементов, получаемых методами интегральной технологии.

 



Дата добавления: 2016-11-29; просмотров: 1921;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.017 сек.