На поверхности раздела диэлектриков.
e1 e2 e1 e2
b c
E2 ( D2) Sт1 D2
q2 q2
q1 q1 Sт2
a d
Sбок
E1 (D1) D1
а) б)
Рисунок 1-1
На границе раздела двух диэлектриков с различными диэлектрическими проницаемостями e1 и e2 (рис. 1-1) происходит преломление векторов напряженности и смещения. Границу в малой окрестности рассматриваемой точки считаем плоской. Применяя к малому прямоугольному замкнутому контуру «abcda» (рис.1-1 а), длинные стороны которого параллельны границе и вплотную прилегают к поверхности раздела, запишем закон электромагнитной индукции, учитывая, что магнитный поток сквозь бесконечно малую площадку, ограниченную контуром «abcda», равен нулю:
.
Представив этот интеграл в виде суммы, получим:
.
На отрезках ab и cd, ввиду их малости, считаем напряженность одинаковой и равной соответственно и Интегралами по отрезкам bc и ad контура пренебрегли, так как они бесконечно малы по сравнению с отрезками ab и cd (bc= ad<< ab= cd). Окончательно можем записать:
или .
На поверхности раздела сред с различными диэлектрическими проницаемостями равны касательные (по отношению к границе) составляющие векторов напряженности электрического поля.
Для замкнутой поверхности, образованной боковой поверхностью цилиндра и двумя торцевыми поверхностями, расположенными вплотную к поверхности раздела диэлектриков, (рис.1-1 б), применяя постулат Максвелла, можем записать:
.
Интегралом по боковой поверхности цилиндра пренебрегаем ввиду его малости, по сравнению с интегралами по торцам, в пределах которых считаем векторы электрического смещения постоянными и равными соответственно и . Потоки через торцы разного знака, так как один из них входит в поверхность, а другой выходит, поэтому, сократив на можем записать:
; .
На поверхности раздела диэлектриков отсутствует поверхностные заряды (s = 0). Запишем окончательно граничные условия для вектора электрического смещения:
или
На поверхности раздела сред с различными диэлектрическими проницаемостями равны нормальные (по отношению к границе) составляющие векторов электрического смещения.
Поделив соотношения, записанные для составляющих векторов, получим условия преломления векторов на границе раздела:
Дата добавления: 2021-02-19; просмотров: 303;