Уравнение неразрывности. Уравнение Бернулли.


Уравнение неразрывности.

Идеальная жидкость - это абстрактная жидкость, не обладающая вязкостью, теплопроводностью, способностью к электризации и намагничиванию.

Такое приближение допустимо для маловязкой жидкости. Течение жидкости называется стационарным, если вектор скорости в каждой точке пространства остается постоянным.

Графически движение жидкостей изображается с помощью линий тока.

Линии тока жидкости - это линии, в каждой точке которых вектор скорости частиц жидкости направлен по касательной (рис. 4).

Линии тока проводят так, чтобы число линий, проведенных через некоторую единичную площадку, ^ потоку, было численно равно или пропорционально скорости жидкости в данном месте.

Часть жидкости, ограниченная линиями тока, называется трубкой тока.

Т.к. скорость частиц жидкости направлена по касательной к стенкам трубки тока, частицы жидкости не выходят из трубки тока, т.е. трубка - как жесткая конструкция. Трубки тока могут сужаться или расширяться в зависимости от скорости жидкости, хотя масса жидкости, протекающей через некоторое сечение, ^ ее течению, за определенный промежуток времени будет постоянной.

Т.к. жидкость несжимаема, через S1 и S2 пройдет за Dt одинаковая масса жидкости (рис. 5).

- уравнение неразрывности струи или теорема Эйлера.

Произведение скорости течения несжимаемой жидкости и площади поперечного сечения одной и той же трубки тока постоянно.

Теорема о неразрывности широко применяется при расчетах, связанных с подачей жидкого топлива в двигатели по трубам переменного сечения. Зависимость скорости потока от сечения канала, по которому течет жидкость или газ, используется при конструировании сопла ракетного двигателя. В месте сужения сопла (рис. 6) скорость истекающих из ракеты продуктов сгорания резко возрастает, а давление падает, благодаря чему возникает дополнительная сила тяги.

 

Уравнение Бернулли.

Пусть жидкость движется в поле сил тяжести так, что в данной точке пространства величина и направление скорости жидкости остаются постоянными. Такое течение называется стационарным. В стационарно текущей жидкости кроме сил тяжести действуют еще и силы давления. Выделим в стационарном потоке участок трубки тока, ограниченный сечениями S1 и S2 (рис.7)

За время Dt этот объем переместится вдоль трубки тока, причем сечение S1 переместится в положение 1', пройдя путь , а S2 - в положение 2', пройдя путь . В силу неразрывности струи выделенные объемы (и их массы) одинаковы:

, .

Энергия каждой частицы жидкости слагается из ее кинетической и потенциальной энергий в поле сил земного тяготения. Вследствие стационарности течения частица, находящаяся через Dt в любой из точек незаштрихованной части рассматриваемого объема, имеет такую же скорость, и, следовательно Wк, какую имела частица, находившаяся в той же точке в начальный момент времени. Поэтому изменение энергии всего рассматриваемого объема можно вычислить как разность энергий заштрихованных объемов V1 и V2.

Возьмем сечение трубки тока и отрезки настолько малыми, чтобы всем точкам каждого из заштрихованных объемов можно было приписать одно и то же значение скорости, давления и высоты. Тогда приращение энергии равно:

В идеальной жидкости трение отсутствует, поэтому DW должно равняться работе, совершенной над выделенным объемом силами давления:

(«-» т.к. направлена в сторону, противоположную перемещению )

, ,

,

,

.

Сократим на V и перегруппируем члены:

,

сечения S1 и S2 были выбраны произвольно, поэтому можно утверждать, что в любом сечении трубки тока

(1)

Выражение (1) представляет собой уравнение Бернулли. В стационарно текущей идеальной жидкости вдоль любой линии тока выполняется условие (1).

Для горизонтальной линии тока ,

Уравнение Бернулли достаточно хорошо выполняется для реальных жидкостей, внутреннее трение в которых не очень велико.

Уменьшение давления в точках, где скорость потока больше, положено в основу устройства водоструйного насоса.

Выводы этого уравнения учитываются при расчетах конструкций насосов систем подачи жидкого топлива в двигатели.



Дата добавления: 2016-11-04; просмотров: 3182;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.