Номенклатура фаз клинкера
Короткие формулы в цементной химии с упрощением химической номенклатуры, как правило, используются для обозначения оксидов. Употребляются следующие сокращения. Именно так обыкновенные символы элементов не путают в химии цементов.
A12О3 - A CaO - C CО2 - c
Fe2О3 - F H2О - Н K2О - K
MgO - M Na2О - N SiО2 - S
SО3 - s
Таблица 1.5 дает общий обзор состава и качества фаз в портландцементном клинкере.
Таблица 1.5 - Общий обзор состава и качества фаз в клинкере
Наименование фазы в клинкере | Алит Трехкальцевый силикат | Белит Двухкальцевый силикат | Алюминатная фаза Трехкальциевый алюминат | Ферритная фаза Кальциевый алюмоферрит |
Состав чистой фазы | 3CaO·SiО2 | 2CaО·SiО2 | 3CaO·Al2О3 | 2CaО·(AI2О3, Fe2О3) |
Краткое название | C3S | C2S | C3A | C2(A,F) или C2ApFe1-p |
Установленные посторонние примеси | Mg, Al, Fe | Щелочи, Al, Fe, флюориты, фосфаты | Щелочи, Fe, Mg, силикаты | Силикаты, Mg, Ti |
Количество модификаций | ||||
Сингония в техническом клинкере | Моноклинная Ромбическая | β-белит, моноклинная (γ- и γ'-белит) | Кубическая, орторомбическая, тетрагональная | Орторомбическая |
Цвета чистых фаз | Белый | Белый | Белый | Темно-коричневое, с присутствием MgO серо-зеленое |
Содержание в клинкере, масс. % Высокое Среднее Низкое | 0,2 |
Алит
Трехкальциевый силикат - это основной компонент портландцементного клинкера и состоит из C3S, который содержит ряд иных оксидов-примесей, примерно 2% MgO, наряду с этим A12O3, Fe2О3, TiО2 и т.п. Нормы внедрения примесей зависят, в частности, от состава исходного материала, температуры обжига и режима охлаждения. Содержание оксидов влияет на качество клинкера, например, возрастающая доля СаО повышает, как правило, прочность цемента. При температуре менее 1250 °C C3S при очень медленном охлаждении может распадаться на CаО и C2S, особенно если устанавливается восстановительная среда при горении топлива. Трехкальциевый силикат как основной компонент в значительной степени определяет качество цемента, особенно рост прочности при гидратации и конечную марку. Трехкальциевый силикат образует большие кристаллы с поперечным размером и диаметром примерно от 1-10 мкм. Часто кристаллы трехкальциевого силиката зарастают с приложением двухкальциевого силиката и включениями фазы клинкерного стекла. Под поляризационным микроскопом они проявляются (при травлении с CDTA) в характерно светло-желтом цвете (смотрите рисунок 1.2). При влажном хранении (попадании воды) происходит типичное разъедание краев алита (смотри рисунок 1.2 слева снизу) возникают в кристаллах алита. Рисунок 1.3 показывает частично освобожденный клинкерной фазой белит под растровым электронным микроскопом [5, 25,26, 27]. Белит, при температуре появления расплава преимущественно находится в твердом состоянии, в клинкере с высоким известковым стандартом белит образуется только в незначительных количествах. У белита рост прочности происходит медленно, однако, через длительное время она достигает по меньшей мере, тех же самых прочностей, как трехкальциевый силикат. В клинкере преимущественно существует ß-модификация без достаточного внедрения иных ионов. При комнатной температуре ß-С2S стабильна и в термодинамике более стабильна гидравлически. Модификация менее активно переходит в другие формы. Переход в другие формы может произойти при недостаточном внедрении в решетку иных ионов, в частности щелочей, а также может произойти при медленном процессе охлаждения.
Рисунок 1.3– REM электронное изображение кристалла алита со значительной фазой клинкерного стекла [28]
Белит
Двухкальциевый силикат состоит из C2S, который содержит те же оксиды трехкальциевого силиката. Двухкальциевый силикат при температуре появления расплава существует преимущественно в твердом состоянии, в клинкере с высоким известковым стандартом (КН) его содержание в незначительном количестве. Рост прочности C2S происходит медленно, однако, при длительной гидратации прочность белита достигает, по меньшей мере, тех же самых прочностей как трехкальциевый силикат. В клинкере существует преимущественно ß-модификация без достаточного внедрения чуждых ионов, при комнатной температуре C2S стабильна и в термодинамической более стабильная чем гидравлически, тем не менее, эта модификация малоактивная. Преобразование может быть проведено внедрением иных ионов, в частности щелочей, а также более быстрым процессом охлаждения. В cоставе клинкера двухкальциевый силикат образует кристаллы округлой формы, в электронном микроскопе видны кристаллы коричневого цвета с крестообразной штриховкой из пластин. Двухкальциевый силикат образуется в большинстве случаев ячейками (скоплениями), так как происходит локальный недостаток в CaO. Это происходит вследствие недостаточного перемешивания и неоднородности сырьевой муки. При известковом стандарте (КН) <100 в клинкере образуется двухкальциевый силикат и трехкальциевый силикат.
Рисунок 1.4 частично показывает фазы клинкерного стекла, освобожденные от двухкальциевых силикатных кристаллов под растровым электронным микроскопом [4, 5, 25, 27, 29, 30].
Рисунок 1.4- REM электронное изображение кристаллов двухкальциевого силиката, которые значительно освобождены от фазы эмали (стекла) [51]
Фазы алюмината
Мелкозернистые фазы алюмината и ферритовые фазы часто обобщаются как "промежуточное вещество" или "основная масса" цементного клинкера. Оба образуются при охлаждении клинкера из его жидкой фазы (расплава) и обозначаются поэтому также как фаза расплава. Также фаза алюмината (C3A) содержит иные ионы, особенно щелочи (Na2О, K2О), которые могут внедряться в количестве более чем 5%. Фазы состава Na2О·8CaO·3A12O3 и K2О·8CaO·3A12O3 известны. В составе клинкера фазу алюмината и ферритовую фазу нужно отличать только при нормальном и медленном охлаждении клинкера, так как они очень тонко кристаллизованы. Идеоморфический алюминат существует в постепенно охлажденном клинкере в длинных, серо окрашенных призмах или иглах (рисунок 1.2). Фаза алюмината имеет высокую гидратационную активность. Она еще существенно может повышаться внедрением щелочей в ранней фазе реакции (5-15 мин.). Тем не менее, следующая реакция, которая начинается после 2-4 ч., существенно замедляется щелочами [4, 27,31].
Фаза феррита
Ферритовая фаза не имеет определенного состава, а представляет собой смешанный ряд кристаллов, замыкающие звенья C2A (существующее только при крайних условиях) и C2F: C2A····· C6A2F····· C4AF····· C6AF2 ····· C2F. Состав ферритовой фазы определяется железом. Часто он соответствует алюминиевой доле сырьевой муки, приблизительно формулы C4AF, который соответствует существующему в природе минералу браунмиллерит. Общая формула смешанного ряда кристалла C2(A,F). Также в ферритовую фазу входят иные ионы. Магний обуславливает серый цвет цемента; чистый C4AF коричневый, насыщенный MgO C4AF напротив - серо-зеленый. Ферритовая фаза гидратирует с водой медленнее, чем фаза алюмината. Ее реакционная способность тем незначительнее, чем выше содержание Fe2О3 [4, 5, 25, 133]. В аншлифе клинкера ферритовая фаза появляется при травлении как фиолетовая матрица, в которую входят другие фазы (смотри рисунок 1.2).
Дата добавления: 2016-10-26; просмотров: 3301;