Закон распределения случайной величины


Соотношение, устанавливающее тем или иным способом связь между возможными значениями случайной величины и их вероятностями, называется законом распределения случайной величины.

Закон распределения дискретной случайной величины обычно задается рядом распределения:

При этом , где суммирование распространяется на все (конечное или бесконечное) множество возможных значений данной случайной величины .

 

Задача 1. Даны вероятности значений случайной величины : значение 10 имеет вероятность 0,3; значение 2 – вероятность 0,4; значение 8 – вероятность 0,1; значение 4 – вероятность 0,2. Построить ряд распределения случайной величины .

Решение. Расположив значения случайной величины в возрастающем порядке, получим ряд распределения:

0,4 0,2 0,1 0,3

Возьмем на плоскости хОр точки (2; 0,4), (4; 0,2), (8; 0,1) и (10; 0,3). Соединив последовательные точки прямолинейными отрезками, получим многоугольник (или полигон) распределения случайной величины

х
Задача 2.Разыгрываются две вещи стоимостью по 5000 руб и одна вещь стоимостью 30000 руб. Составить закон распределения выигрышей для человека, купившего один билет из 50.

Решение. Искомая случайная величина представляет собой выигрыш и может принимать три значения: 0, 5000 и 30000 руб. Первому результату благоприятствует 47 случаев, второму результату - два случая и третьему – один случай. Найдем их вероятности:

; ; .

Закон распределения случайной величины имеет вид:

0,94 0,04 0,02

В качестве проверки найдем .



Дата добавления: 2021-01-26; просмотров: 345;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.