Получение нефтепродуктов


Нефть и получение нефтепродуктов

 

Нефть используется человеком очень давно. Археологи нашли остатки нефтяного промысла на берегах Евфрата за 4–6 тыс. лет до нашей эры, а известный путешественник Марко Поло около 700 лет назад при посещении Кавказа обратил внимание на «земляное масло», используемое как горючее вещество и средство для лечения верблюдов [1].

Сначала собирали нефть, скапливающуюся в углублениях на поверхности земли, а затем стали добывать из-под земли. Первую в мире скважину пробурил в 1848 г. Ф. А. Семёнов – техник небольшого промысла недалеко от Баку [2].

Нефть – жидкое горючее ископаемое от светло-коричневого до тёмно-бурого цвета со специфическим запахом, плотностью 650–1050 кг/м3. Нефть плотностью ниже 830 кг/м3 называют лёгкой, 831–860 – средней и выше 860 кг/м3 – тяжёлой.

Температура начала кипения нефти, как правило, от +26 °С, теплота сго-рания – 43,7–46,2 МДж/кг.

Атомарный состав нефти: углеводород – 82–87%, водород – 11–14%, сера – до 7%, азот и кислород – до 3%.

 

Компоненты нефти и их влияние

На нефтепродукты

 

Основа нефти – жидкие соединения углерода с водородом (углеводороды), в которых растворены твёрдые и газообразные вещества:

1. СnH2n+2 – алканы или парафины. Это насыщенные углеводороды, т. е. отсутствуют двойные связи.

Количество алканов в нефтях зависит от месторождения и составляет в основном 25–30%. В нефтях некоторых месторождений, с учётом растворённых в них газов, содержание алканов достигает 50–70%.

По своей структуре алканы бывают нормального строения, например октан и изоалканы с разветвлёнными цепями (изооктан).

 

Октан

 

 

 
 

Изооктаны образуют разнообразные ветвистые структуры, например 2, 2, 4-триметилпентан

2. В отличие от цепочного строения (нормальные или изомерные парафины) атомы углерода могут быть замкнуты в кольцо (нафтеновые углероды). Во втором случае у каждого атома углерода две связи идут на соединение с соседними углеродными атомами, а две – с атомами водорода. Структурная формула СnH2n , например циклогексан:

 

 

3. В нефти присутствуют и ароматические углеводороды с двойной связью в кольце – например бензол С6H6. Общая структурная формула СnH2n-6

 

 

Общий признак этих трёх классов углеводородов – химическая устойчивость при нормальных температуре и давлении. Непредельных углеводородов в сырой нефти нет.

При переработке нефти почти всегда образуются непредельные ненасыщенные углеводороды (олефины). Это различной длины парафиновые цепи с одной или двумя двойными связями, например бутен С4H8 или бутадиен С4H6:


Перечисленные углеводороды весьма существенно влияют на свойства нефтепродуктов.

Нормальные парафиновые углеводороды очень неустойчивы к повышенным температурам, легко окисляются и вызывают взрывное сгорание (детонацию). Их присутствие в бензинах нежелательно.Изомеры (изооктан), напротив, имеют высокую детонационную стойкость. Для высокооборотных дизелей эти свойства обеспечивают оптимальный режим работы, однако их содержание в дизельных топливах ограничивают вследствие высокой температуры застывания.

Нафтеновые углеводороды занимают по свойствам промежуточное положение между парафиновыми и ароматическими. Они пригодны и для бензина, и для дизельного топлива. Из-за низкой температуры застывания нафтены – основа зимних видов топлива.

Ароматические углеводороды в дизельном топливе нежелательны, так как трудно окисляются, вызывая жёсткую работу двигателя. При понижении температуры их вязкость сильно возрастает. Низкомолекулярные арены (бензол и его производные) входят в состав автомобильных бензинов (в дизельном топливе нежелательны).

Непредельные углеводороды очень непрочны, для них характерны реакции присоединения по месту разрыва двойной связи. Они легко окисляются, образуя смолы, органические кислоты и другие соединения. Чем выше температура и больше концентрация кислорода (летом в незначительно заполненных топливных баках), тем быстрее и интенсивнее протекают реакции окисления.

Олефины склонны также к соединению нескольких молекул в одну с большей молекулярной массой (полимеризация) и присоединению отдельных молекул к исходному веществу (конденсация). В результате в топливе накапливаются высокомолекулярные смолисто-асфальтовые соединения, резко ухудшающие их свойства. Непредельные углеводороды значительно снижают стабильность (неизменность состава) нефтепродуктов, их присутствие нежелательно.

По содержанию серы нефти разделяют на малосернистые – до 0,5%, сернистые 0,5–2,0% и высокосернистые – более 2%. Сера присутствует в нефти и нефтепродуктах в свободном состоянии и в виде химических соединений.

Элементарная сера, находясь в растворённом или взвешенном состоянии, способна вызывать сильную коррозию металлов даже при низких температурах.

Сероводород (газ с неприятным, резким запахом) хорошо растворяется в воде и в значительно меньшей степени в углеводородах, на чём основано его удаление из нефтепродуктов. В присутствии воды он обладает свойствами слабой кислоты и способен замещать свой водород на металлы, активно корродируя их.

Меркаптаны RSH ввиду наличия атома водорода действуют на металлы аналогично.

Элементарная сера S, сероводород H2S и меркаптаны RSH относятся к активным сернистым соединениям способным корродировать металлы при нормальных условиях.

Неактивные сернистые соединения (в основном сульфиды углеводо–родов) при нормальных условиях металлы не корродируют. Но при полном сгорании в двигателе они образуют сернистый SO2 и серный SO3 ангидриды. При взаимодействии с водой получаются сернистые и серные кислоты, чрезвычайно агрессивные. Кислоты воздействуют на конструкционные материалы двигателя, а попадая в атмосферу, образуют мельчайшие капельки, которые переносятся ветром на большие расстояния, вызывая кислотные дожди.

Смолисто-асфальтовые вещества содержатся как в нефти, так и в нефтепродуктах, особенно тяжёлых. Они вызывают отложения в системе смазки, лако- и нагарообразование.

Другие соединения имеются в нефти в весьма незначительных количествах и заметного влияния на свойства топлив и смазочных материалов не оказывают.

Получение нефтепродуктов

 

Получение нефтепродуктов из нефти ведётся по двум направлениям: прямая перегонка (дистилляция) и деструктивная переработка. Сначала нефть подвергали только дистилляции, сейчас этот способ переработки называют первичным или физическим. При этом средний выход бензиновых компонентов колеблется в зависимости от состава нефти от 15 до 25%, а на долю остальных топлив обычно приходится 20–30% получаемых дистиллятов.

В связи с ростом потребления горюче-смазочных материалов русскими учёными (А. А. Летний – 1875 г., В. Г. Шухов – 1891 г. и др.) были разработаны методы вторичной или химической переработки, позволившие значительно увеличить выход нефтепродуктов – до 55–60% от общего количества переработанной нефти.

 

 



Дата добавления: 2021-01-26; просмотров: 365;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.