Коэффициент сопротивления системы. Характеристика системы


Полные потери напора в каком-либо трубопроводе слагаются из потерь напора на трение и потерь напора, вызванных местными сопротивлениями. Подобное геометрическое суммирование потерь напора по всему пути движения жидкости в трубопроводе носит название принципа наложения потерь. Если в трубопроводе, состоящем из нескольких участков последовательно соединённых труб, имеются различные местные препятствия, то суммарная потеря напора равна

. (3.106)

 

Рассмотрим несложную систему трубопровода, представленную на рис.3.18.

Трубопровод состоит из 2х участков труб, все размеры которых и гидравлические характеристики известны. В данной системе возникнут потери:

1. на трение на участках I и II;

2. на входе в трубу (а);

3. в повороте (б);

Рис.3.18 4. во внезапном сужении (в);

5. на выходе из трубы (г).

Тогда полные потери напора составятся из суммы:

. (3.107)

Сгруппировав слагаемые с общими множителями, получим

. (3.108)

По условию неразрывности потока имеем

. (3.109)

Подставим (3.109) в (3.108)

. (3.110)

Выражение, стоящее в квадратных скобках, представляет собой коэффициент сопротивлений данной системы трубопроводов ξсист. В результате, выражение суммарных потерь напора приобретает краткую запись в виде формулы Вейсбаха

. (3.111)

Таким образом, коэффициентом сопротивления системы называется сумма всех коэффициентов сопротивлений, приведённых к единому скоростному напору.

Запишем уравнение Бернулли для жидкости, перетекающей из левого бака в правый. В качестве характерных сечений возьмем свободные поверхности 1-1 и 2-2, за плоскость сравнения примем плоскость 2-2. Скоростными напорами в сечениях пренебрегаем.

. (3.112)

Давления на свободной поверхности одинаковы и равны атмосферному, поэтому

. (3.113)

Координата z1 – это исходный геометрический напор жидкости Н, находящейся в левом баке. Координата z2 характеризует запас удельной энергии положения после перемещения жидкости через сопротивления из левого бака в правый. Назовём эту величину свободным напором после сопротивления , следовательно

, (3.114)

то есть располагаемый напор истрачен на преодоление сопротивлений и создание свободного напора.

Выразим скорость V2 через расход и подставим в уравнение (3.111)

. (3.115)

Коэффициент Ксист связывает суммарные гидравлические потери в системе с протекающим расходом. Подставим (3.114) в (3.113) и окончательно получим

. (3.116)

Это уравнение называется характеристикой системы и показывает, каким напором необходимо располагать, чтобы обеспечить в системе заданный расход Q и свободный напор на выходе hсв.

 



Дата добавления: 2016-10-07; просмотров: 3045;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.