При неглубоком (слева) и глубоком (справа) повреждениях
I – регенерация суставного хряща: 1 – синовиальная оболочка; 2 – хрящ; 3 – кость; 4 – зона некроза; 5 – зона пролиферации; 6 – некальцифицированный хрящ; 7 – кальцифицированный хрящ; 8 – остеоны с сосудами; 9 – костный мозг; 10 – грануляционная ткань
II – регенерация реберного хряща: 1 – перихондр; 2 – хрящ; 3 – зона некроза; 4 – зона пролиферации; 5 – грануляционная ткань
Эктопическое развитие кости
Эктопический рост кости (остеогенез) –это образование кости в нетипичных местах. Наиболее часто он имеет место при дистрофическом обызвествлении омертвевших тканей или тканей, находящихся в состоянии глубокой дистрофии. При этом большое значение имеет ощелачивание среды и увеличение активности щелочной фосфатазы, выделяемой из погибших клеток. Эктопическое костеобразование может иметь место в оболочках глаза, стенках сосудов, почках, щитовидной железе, сухожилиях, поперечнополосатых мышцах, рубцах: зоне инфаркта миокарда, зонах хронического воспаления и др.
Причины эктопического остеогенеза до конца не исследованы. В условиях эксперимента воспроизвести его до последнего времени было достаточно трудно. Существуют два методических приема для получения эктопической кости: 1) трансплантация в соединительную ткань слизистой оболочки мочевого пузыря; 2) трансплантация кусочка кости с убитыми костными клетками.
В настоящее время установлено, что причиной эктопического костеобразования является стимуляция при этом выделения индукторов остеогенеза. Такими индукторами являются, прежде всего, морфогенетические белки кости (МБК).Они способствуют превращению стволовых клеток рыхлой волокнистой неоформленной соединительной ткани в остеогенные клетки. В настоящее время эти белки выделены и используются для изучения эктопического остеогенеза. Их введение в рыхлую волокнистую неоформленную соединительную ткань вызывает костеобразование.
Эктопический остеогенез имеет существенное клиническое значение, так как приводит к нарушению функций органов, в которых происходит, и может явиться причиной смерти.
Физиологическая и посттравматическая регенерация костной
Ткани
Физиологическая регенерация костной ткани заключается в постоянной перестройке кости. Она призвана не только привести в соответствие строение кости с нагрузками на нее, но и поддерживать минеральный гомеостаз. Осуществляется за счет сочетанной деятельности остеобластов и остеокластов, которые находятся в надкостнице, эндосте и каналах остеонов. В норме большая часть их пребывает в состоянии покоя и активируется при инициации перестройки. Активация остеобластов ведет к одновременной активации остеокластов и наоборот (функциональное сопряжение остеобластов и остеокластов). За счет деятельности этой функциональной пары клеток происходит следующая цепь событий в кости: активация клеток, осуществляющих разрушение кости → резорбция старой кости → реверсия (переход от резорбции кости к остеосигенезу) → остеогенез.
Репаративная регенерация костной ткани происходит после переломов. Осуществляется за счет деятельности остеобластов, формирующихся из остеогенных (периваскулярных) клеток. Посттравматическая регенерация кости протекает в несколько стадий (рис.14).
1. Стадия разрушения поврежденных структур кости и деления остеогенных клеток.В эту стадию происходит разрушение поврежденных элементов кости и возникает воспалительная реакция. Одновременно периваскулярные клетки превращаются в остеобласты, которые приступают к синтезу межклеточного вещества.
2. Стадия образования и дифференцировки тканевых структур кости.Остеобласты выселяются в место перелома и образуют компоненты межклеточного вещества. Одновременно с образованием остеобластов в силу генетического родства формируются линии фибробластов и хондробластов, при чем хондроидная ткань получает преимущественное развитие. В результате формируются соединительнотканная или (чаще) хрящевая мозоли.
|
3. Стадия первичной костной структуры.Хрящевая (соединительнотканная) мозоль минерализуется и превращается в костную мозоль.Одновременно восстанавливается сосудистая система кости.
4. Стадия окончательной перестройки регенерата.Вначале костная мозоль состоит из грубоволокнистой костной ткани, которая потом заменяется на пластинчатую. Происходит резорбция избытка кости и восстановление костномозговой полости.
Приведенная схема регенерации кости наблюдается при так называемом вторичном костном сращении,когда костные отломки недостаточно сближены и закреплены. Эта ситуация встречается в клинике наиболее часто. При хорошей иммобилизации и репозиции (сопоставлении) отломков регенерация происходит более быстро и экономно с незначительным разрушением костной ткани по обе стороны от перелома. При этом практически сразу образуется пластинчатая костная ткань без формирования соединительнотканной и хрящевой мозолей (первичное костное сращение).
Стимуляция регенерации кости.Стимуляция регенерации костной ткани может осуществляться применением анаболических гормонов, витаминов, препаратов ДНК, РНК и др. Она происходит также при введении в зону дефекта костных опилок, а также трансплантации аллогенной кости. Широко используется также применение метода дистракции (растяжения)кости по Г.А. Илизарову (аппарат Илизарова). Метод основан на пьезоэлектрическом эффекте кости: ее растяжение вызывает формирование положительного заряда, а сжатие – отрицательного электрического заряда. К положительному заряду тропны остеокласты, которые при растяжении начинают осуществлять резорбцию костной ткани. Однако в силу сопряжения функции остеобластов и остеокластов через определенное время происходит активация последних и выработка ими межклеточного вещества. Повторная дистракция ведет к повторению цикла. В результате последовательных дистракций происходит постепенное новообразование и созревание костных структур, увеличивается межотломковый костный регенерат, который в средней части сохраняет соединительнотканную структуру, на основе которой и происходит костеобразование. Этот метод позволяет, во-первых, эффективно лечить переломы, так как аппарат Илизарова позволяет хорошо сопоставить и иммобилизировать отломки, в результате очень рано создается возможность включения конечности в функцию (нагрузка на нее ведет к активации остеобластов). Во-вторых, метод позволяет увеличивать длину конечностей для исправления дефектов скелета.
Рост кости в длину происходит за счет метаэпифизарной пластинки роста. Наблюдается до периода полового созревания, после наступления которого половые гормоны способствуют подавлению митозов клеток и минерализации хряща метаэпифизарной пластинки. Рост кости в толщину происходит за счет надкостницы. При этом физический труд способствует размножению клеток в надкостнице, и кость становится толще.
Дата добавления: 2016-10-07; просмотров: 4704;