О ПРОИСХОЖДЕНИИ ДВИГАТЕЛЬНОЙ ФУНКЦИИ
Из всех областей вопросов, относящихся к компетенции общей физиологии, ни одна не является столь специфически человеческой, как область физиологии двигательных функций, несмотря на наличие и здесь бесспорной и непрерывной преемственности от филогенетических предков. Дело в том, что больше ни в одной системе физиологических функций не имел места такой интенсивный и вдобавок убыстряющийся филогенетический прогресс. Едва ли мы смогли бы отметить существенные сдвиги в смысле эволюционного прогресса между любым представителем теплокровных и человеком в какой бы то ни было иной функциональной сфере - хотя бы в области вегетативных функций дыхания, кровообращения, обмена и т.д.1 Исключение в смысле, несомненно, еще более бурного прогресса составляет только область, выделенная по методологическому признаку в ведение самостоятельной науки - область явлений психической жизни, или, как нам будет удобнее для связного контекста обозначать ее здесь, область центральных замыкательных систем нервного аппарата.
Но тот самый вопрос метода, который послужил к ее выделению в самостоятельную научную ветвь, создает здесь непреодолимое добавочное осложнение. Если бы захотели представить упомянутый прогресс графически, то для функции дыхания или обмена он изобразился бы линией, вряд ли существенно отклоняющейся - в пределах филогенеза теплокровных - от параллельности с осью абсцисс. Кривая развития психических функций имела бы все основания выглядеть на подобном графике очень круто восходящею кверху; но, к сожалению, мы имели бы объективное право нанести на чертеж только ее самую правую (самую верхнюю) площадку, относящуюся к человеку. Вся остальная кривая осталась бы в области гипотез из-за полного отсутствия объективного материала, касающегося животных, несмотря на всю героику объединенных усилий зоопсихологов, бихевиористов и кондиционалистов. И только для двигательных отправлений мы можем вполне реально и объективно построить полностью их эволюционную кривую, круто восходящую к правому концу графика и далеко обгоняющую темпами своего развития сам по себе весьма не медленно эволюционирующий их морфологический центрально-нервный субстрат. Уже одно это обстоятельство делает физиологию движений интересной для психолога и невролога, даже независимо от того значения, какое она имеет для них в качестве необходимого pendant к несравненно лучше разработанной отрасли психофизиологии рецепторных функций.
Но, помимо этого обстоятельства, огромное эволюционное значение двигательной функции оттеняется еще длительностью того срока, в течение которого она занимала ведущее положение в филогенезе соматического аппарата в целом. Рекордный темп роста и эволюции центральных замыкательных систем объясняется именно тем, что этим системам пришлось за тот же промежуток времени проделать больший путь развития: они начали ниже эффекторики, а кончают выше. Руководящая роль как по положению, так и по ведущему значению в филогенетической эволюции досталась им сравнительно недавно, тогда как раньше они исполняли (и сейчас исполняют у менее развитых организмов) значительно более скромные вспомогательные обязанности интегрирующей связи между рецепторикой и эффекторикой. Современный нам массив животного мира - живая книга филогенетической истории - сохранил нам память о ранней биографии этого органа, едва лишь начинавшего (у кишечнополостных и иглокожих) свою впоследствии головокружительную карьеру мало заметной работой связиста, только что введшего в физиологический обиход новый, биоэлектрический (телеграфный) способ связи на место более древнего способа вещественных гуморальных (так сказать, почтовых) сигнальных пересылок. Однако поворотным пунктом в истории центральных замыкательных систем явилось другое обстоятельство - появление продолговатых животных форм на смену древнейшим округлосимметричным (лучистым) формам. Это определило собой преобладание переднего, ротового, конца тела, первым сталкивающегося как с добычей, так и с опасностью, и тем самым оказавшегося перед биологической необходимостью сигнализации всем прочим метамерам, возглавления и объединения их движений и инициативы этих движений. Головной конец становится главным концом. В этом пункте - зародыш централизованных нервных систем на месте древних диффузных(Reflex-Republics Uexrull). Далее, у головных метамеров оказались все предпосылки к возникновению и развитию на них телерецепторов, трансформировавшихся каждый путем утончения и усовершенствования из одной из древних контактных категорий (обоняние - из вкусового хеморецептора, слух - из вибрационной, зрение - из кожной фотохимической чувствительности). Телерецепторы оказались могучим централизующим фактором уже потому, что дали животному возможность реагировать на раздражитель, по сравнению с отдаленностью которого собственные размеры его тела ничтожно малы; это выдвинуло на первый план локомоторные перемещения в пространстве всего тела как целого, оттеснив в число второстепенных частные метамерные реакции, преобладавшие в эпоху господства тангорецепторов. Биологическая необходимость локомоций привела к возникновению мощных интегрирующих, синергирующих аппаратов центральной нервной системы - древнейших во всем филогенезе позвоночной группы действительно центральных нервных образований и при этом не превзойденных, как увидим ниже, вплоть до человека в отношении способности к обширнейшим двигательным интеграциям и мышечным синергиям: речь идет о таламо-паллидарной двигательной системе, или уровне, как мы будем называть ее в дальнейшем (см. гл. IV).
Как справедливо замечает Sherrington, "телерецепторы создали головной мозг", точнее - именно то, что мы выше назвали центральными замыкательными системами (наложив попутно централизующий отпечаток и на спинной мозг, некогда чисто метамерный, в более позднем филогенезе приобретший несомненные черты центрального образования); но дело в том, что рецепторы, и именно телерецепторы в наибольшей мере, сами являются вторичными, производными приборами, и здесь необходимо углубить и продолжить ход рассуждений Sherrington.
В процессе эволюции соматической системы (разве лишь за исключением самого последнего филогенетического отрезка) определяющим звеном являются эффекторные функции. Судьбу индивидуума в борьбе за существование решают его действия - большая или меньшая степень их адекватности во все осложняющемся процессе приспособления. Рецепторика здесь представляет собой уже подсобную, обслуживающую функцию. Нигде в филогенезе созерцание мира не фигурирует как самоцель, как нечто самодовлеющее. Рецепторные системы являются либо сигнальными - мы уже видели их в этой роли, - и тогда любая степень их совершенства не в состоянии сама по себе обеспечить особи биологического преимущества в случае одновременной дефектности обслуживаемого ими эффекторного аппарата, либо они процессуально обеспечивают полноценную, координированную работу эффекторов - в этой роли мы еще увидим их ниже, - и здесь подсобный характер их деятельности вытекает из самого существа выполняемой ими задачи. Таким образом, и в сигнальной, и в коррекционной роли рецепторы состоят при эффекторных аппаратах, влияя на биологическую судьбу особи или вида не иначе, как через эти последние. Центральные замыкательные системы в этом аспекте исторически являются уже подсобными приборами для подсобных.
Мы покажем дальше, каким путем возникновение и развитие как самих телерецепторов, так и еще более важных для координационной функции сензорных синтезов, опирающихся на центральные замыкательные системы, определяются вырастающими и осложняющимися запросами со стороны эффекторики.
Усложнение возникающих перед организмом двигательных задач и откликающееся на него обогащение координационных ресурсов особи совершаются по двум линиям. С одной стороны, двигательные задачи делаются более сложными в прямом смысле слова. Возрастает разнообразие реакций, требующихся от организма. К самим этим реакциям предъявляются более высокие требования в отношении дифференцированности и точности; наконец, осложняется смысловая сторона движений, действий и поступков животного. Достаточно напомнить, насколько, например, аэродинамический полет птицы сложнее почти полностью гидростатического плавания рыбы или насколько богаче по контингентам участвующих движений охота хищного млекопитающего по сравнению с охотой акулы. Молодая отрасль проворных теплокровных млекопитающих победила тугоподвижных юрских завров именно своею более совершенной моторикой2. С другой стороны, в общем составе встающих перед организмом двигательных задач все возрастает процент задач разовых, непредвиденных, экстемпоральных за счет более древних шаблонных ситуаций. Все многочисленные исследования "пластичности нервной системы" показывают наряду с эволюционным возрастанием приспособляемости центральной нервной системы к нетрафаретным изменениям условий немедленность, почти мгновенность ее перестроек при самых фантастических постановках опыта. Но даже если оставить в стороне эксквизитные экспериментальные анастомозы мышц и нервов, то гораздо более, будничный факт возрастающей по ходу филогенеза способности к накоплению индивидуального опыта, к замыканию новых условных связей, т.е. опять-таки к выходу за рамки родовых стереотипов, подтверждает высказанное положение.
Слегка схематизируя, можно сказать, что первая из двух упомянутых линий развития двигательных координации обеспечивается и сопутствуется преимущественно эволюцией рецепторики, вторая - эволюцией центральных замыкательных систем. Во-первых, по линии рецепторики идет систематическое качественное усовершенствование рецепторных устройств, ведущих свое начало с самого древнего филогенеза: переслоение древней (палеокинетической, см. гл. III) протопатической тактильной чувствительности более новою и тонко работающей эпикритической, реализующейся посредством неокинетического нервного процесса; появление младшей (опять-таки неокинетической) формы проприоцепторики - геометрической, воспринимающей позы и скорости и тяготения и т.п. Во-вторых, все более развивается и приобретает главенствующее положение система телерецепторов, внесшая в эволюцию центральных замыкательных систем и головного мозга в целом весь тот глубокий качественный переворот, о котором уже говорилось выше и который обусловливался постепенным утверждением примата рецепторов этого класса. В частности, важнейшими сопутствующими структурными обстоятельствами здесь являются: 1) переход от одноневронной таламической схемы центростремительного нервного пути к схеме кортикальной афферентации, состоящей из двух и еще более невронов, что знаменует собой отнюдь не только появление пары лишних синаптических перерывов на пути сензорного импульса, а глубокую качественную переработку чувствительных сигналов в промежуточных ганглиозных ядрах; 2) переход от островной системы нервноклеточных сензорных ядер к двумерно развернутой слоистой системе, характерной для коры полушарий; значение обоих этих переходов для эволюции координационной функции уяснится в дальнейшем; 3) приспособительная эволюция рецепторики совершается по линии формирования все усложняющихся синтетических сензорных полей, о которых речь будет ниже, в гл. IV и V. Эти сензорные синтезы, в которых сырые рецепции отдельных органов чувств сливаются вместе с мнестическими компонентами из индивидуального опыта особи в глубоко переработанные и обобщенные направляющие для координированных движений и действий, в свою очередь стимулируют и направляют рост и развитие центральных замыкательных систем в не меньшей мере, нежели это делают телерецепторы. Филогенетическое формирование этого ряда постепенно усложняющихся полей сопряжено с непрерывным ростом удельного веса мнестической слагающей - иначе говоря, индивидуальной памяти3.
В той же слегка схематизированной интерпретации вторая линия развития эффекторики - линия возрастания удельного веса разовых реакций, опирающихся на накопленный и организуемый особью индивидуальный опыт, связана по преимуществу с эволюцией центральных замыкательных систем, имеющих своим субстратом кору больших полушарий. Развитие последней обеспечивает организму и возможность прогрессивного усложнения смысловой структуры его действий и увеличение его мнестических средств; этим путем центральные замыкательные системы переходят на какой-то из ступеней эволюции из подчиненного положения в положение возглавляющих и направляющих дальнейшее развитие всей нервно-соматической системы в целом.
Ход филогенетического развития строения центральной нервной системы..., в отличие от всех прочих органов и систем тела, состоит не только (и даже не столько) в количественном разрастании, сколько в качественном обрастании ее новыми образованиями, не имеющими гомологов в предшествующих этапах филогенеза и по большей части представляющими собой надстройки на один (или больше) неврональный этаж на пути следования нервного процесса. Этот принцип приводит к неминуемой скачкообразности развития центральной нервной системы уже из-за дискретности невронной схемы: осложнение рефлекторной дуги или вообще любого маршрута нервного импульса внутри центральной нервной системы возможно не иначе, как на целое число новых промежуточных нейронов. Путь, по которому центральная нервная система в своем развитии преодолевает эту скачкообразность, вскрывается эпизодами, подобными, например, ходу развития зрительного аппарата от амфибий до птиц, с переходом его от одноневронной схемы "сетчатка - ядра покрышки" к двухневронной: "сетчатка - наружные коленчатые тела - зрительная зона коры полушарий". На протяжении"какого-то этапа развития оба аппарата, и старый, и новый, действуют рядом, после чего первый или инволюционирует, как это и случилось с мезэнфалическими центрами зрения, или, чаще, модифицируется так, чтобы образовать вместе со вторым более сложный функциональный синтез. Так было, например, с постепенным развитием эффекторных аппаратов мозга. Таким порядком мало-помалу формируется структура из многих совместно работающих неврональных этажей.
Необходимо, впрочем, подчеркнуть, что соответственно чрезвычайно общему биологическому принципу постепенной смены ведущих звеньев, проявления которого мы уже видели в чередовании эффекторики, рецепторики и центральных замыкательных систем в роли ведущих определителей эволюции мозга, и сам невронный принцип строения нервной системы родился отнюдь не сразу и не был изначальным спутником эволюции центральной нервной системы. Нервные системы у praevertebrata не невронны; и у позвоночных, до высших млекопитающих включительно, вегетативные системы в их постганглионарной части построены гораздо ближе к невропильной, нежели к невронной схеме. Наиболее своеобразно, что и самые центральные нервные системы высших позвоночных работают по отношению к одним отправлениям как построенные по невронному принципу и в то же самое время по отношению к другим классам функций - как самый неоспоримый сплошной, диффузный невропиль. Не исключена, видимо, возможность того, что первый слой коры полушарий и морфологически построен по типу невропиля; то же представляется более чем вероятным по отношению к целому ряду кортикальных мелкоклеточных скоплений4.
Многие из упомянутых выше неврональных надстроек, возникавших в центральной системе по ходу ее эволюционного обрастания, возглавляли в какой-либо из фаз филогенеза всю центральную нервную систему, переслаиваясь в последующей эволюции еще более молодыми и захватывающими верховное положение образованиями. Здесь должно быть упомянуто еще одно осложнение, обусловливающее, в свою очередь, смещение важнейших отправлений центральной нервной системы и изменение их соотношений, качеств и удельных весов, - это отмечаемая всеми исследователями истории мозга, начиная с Monarow и Economo, прогрессивная "энцефализация" функций. Под этим термином подразумеваются два факта или, может быть, две стороны явлений: 1) прогрессирующая утрата самостоятельности и функциональное обеднение каудальных отрезков центральной нервной системы - спинного мозга и 2) постепенное перемещение "центров" тех или других физиологических функций мозга во все более орально расположенные ядра. Этот неуклонно совершающийся процесс может быть прямым образом связан с обрисованной выше сменой ролей и все более выявляющимся приматом головного мозга. Начиная с какого-то эволюционного момента, головные ганглии из положения обслуживающих и интегрирующих приборов при телерецепторах превращаются в доминирующий орган, в дальнейшем суверенно направляющий весь ход последующего развития. Примат центральной нервной системы в переживаемом периоде эволюции и ее определяющее влияние не только на узко анимальную сферу, но и на вегетатику, трофику, метаболизм, иммунобиологию и т.д. не вызывают сомнений.
Усложнение двигательных задач, неминуемо требующих разрешения со стороны особи, и само по себе совершается отнюдь не плавно и постепенно; наоборот, перемены в образе жизни, зоологическом окружении, экологической обстановке и т.д. приводят к накоплению все больших масс качественно новых координационных проблем с не встречавшимися ранее и не имевшими возможности войти в обиход особыми чертами смысловой структуры, двигательного состава, потребного сензорного контроля и т.д. В течение какого-то времени животные справляются с этими необычными задачами при помощи своих наличных ресурсов; однако рано или поздно противоречие между новыми смысловыми и сензорными качествами нахлынувших задач и неадекватными им координационными средствами животного приводит путем отбора к преобладанию особей, способных справиться с этими новыми качествами, и этим сразу, скачком, получить в свое распоряжение целый новый класс движении, однородных по своему типу и уровню сложности и сходных между собой по качествам потребного сензорного контроля. Если бы эволюционное развитие совершалось по Ламарку, в порядке постепенного упражнения рабочих органов, то можно было бы, пожалуй, ожидать каких-либо гипертрофических, количественных, постепенно, образующихся приспособительных изменений мозга. Но, осуществляясь по принципу отбора, развитие центральной нервной системы в ответ на новые классы двигательных задач не может протекать иначе, как в виде накапливающегося преобладания индивидуумов с качественно отличным, мутировавшим в каких-то отношениях мозгом. Возникновение в филогенезе очередной новой мозговой надстройки знаменует собой биологический отклик на новое качество или класс двигательных задач. Как будет показано ниже, это обязательно означает в то же время появление нового синтетического сензорного поля, а тем самым и появление возможности реализации нового класса или контингента движений качественно иначе строящихся и иначе управляемых, нежели те, которые были доступны виду до этих пор. Мы обозначаем всю перечисленную совокупность морфологических и функциональных сторон, характерных для такого нового класса движений, как очередной уровень построения движений и двигательных координации.
Сказанное выше о линиях усложнения двигательных задач, возникающих перед организмом, позволяет оценить и те направления, по которым совершалось поочередное развитие возникавших один за другим координационных уровней построения.
Более новые в филогенезе, они же и более высокие, уровни становятся:
1) все более тесно связанными с телерецепторикой и надстроенными над ней обобщающими системами в коре головного мозга;
2) все более экстемпоральными, т.е. пригодными для осуществления разовых координационных решений и пластических переключений;
3) все более синтетичными, т.е. опирающимися на сложные психологически организованные синтетические сензорные поля; наконец,
4) все более богатыми мнестическими элементами, накопленными из индивидуального опыта. В этих же направлениях изменяются и облики тех движений, и действий, которые ведутся на соответственных уровнях.
Каждый новый уровень приносит с собой комплект новых движений, какие раньше были организму недоступны. Следует сразу отвергнуть как неверное, старое представление, будто филогенетически более молодые надстройки обеспечивают в основном новые качества координации и, следовательно, будто каждый из разновозрастных мозговых морфологических этажей равнозначен какой-то одной стороне координационной отделки любого целостного движения. Каждый новый морфологический этаж мозга, каждый очередной функциональный уровень построения содержит и приносит с собой не новые качества движений, а новые полноценные движения. В нервной системе высокоразвитого позвоночного содержащимся в ней структурным этажам и доступным для нее уровням соответствует не групп качеств движения, а особых списков или контингентов движений, вполне законченных и биологически пригодных для решения определенных, посильных им задач. Было бы очень трудно понять, какой биологический смысл и какое оправдание своего существования могли бы иметь движения-недоноски, лишенные в течение долгих веков филогенетической эволюции какой-либо существенной группы координационных качеств или, наоборот, представляющие собой наборы второстепенных, вспомогательных качеств без самого главного смыслового определителя - фон без фигуры. В истории развития каждый из уровней построения, констатируемых у человека, был на каком-то этапе наивысшим (разумеется, с известными поправками в отношении эволюции контингентов - см. гл. III) и определял собой "потолок" координационных возможностей организма, обрывавший сверху список доступных ему в ту пору движений; но на каждом подобном этапе эти движения были вполне закруглены и координационно оформлены в меру тех скромных двигательных задач, какие им предстояло разрешать.
Всего ярче подкрепляется это положение о контингентности движений каждого очередного уровня клиническими фактами выпадений движений при четко локализованных очагах или четко системных поражениях в центральной нервной системе. В этих случаях как общий закон (уже подмеченный клинической невропатологией) выпадают не качества всяких движений, а целые списки или классы движений или их фоновых компонент. Что особенно поражает наблюдателя в подобных случаях, - это четкая избирательность выпадений и полная интактность других движений, иногда очень похожих по своему облику на выпавшие, но резко отличающихся от них своей смысловой стороной. Один больной не может поднять руку по приказанию "подними руку", но без затруднения поднимает ее по заданию "сними фуражку"; другой лишен непроизвольной мимики настолько, что производит впечатление страдающего полным парезом всей лицевой мускулатуры, и в то же время легко и точно выполняет любые произвольные движения губ, носа, век, лба и т.д. в порядке намеренного подражания или по словесному заданию; третий больной (гемиплегик) не способен к произвольным движениям в плечевом суставе парализованной руки, не может, особенно в полусне, в полунаркозе или в аффекте, выполнять те же движения как компоненты синергических непроизвольных актов; четвертый пациент не может по заданию начертить на бумаге кружок или косой крестик, но без всякого труда изображает на ней буквы "О" и "X"; пятый не может ступить ни одного шага по гладкому полу, а разметка последнего равноотстоящими поперечными полосками, как по волшебству, возвращает ему все возможности ходьбы и т.д. Таких примеров бесконечно много, и они чрезвычайно разнообразны. В этих случаях часто достаточно умело переключить выпавшее движение на другой, уцелевший уровень, изменив с этой целью формулировку двигательного задания, чтобы разом достигнуть едва ли не полной реституции.
Упомянутый выше принцип морфогенеза центральной нервной системы по типу обрастания приводит к тому, что центральная нервная система высокоразвитого позвоночного, например антропоида или человека, представляет собой своего рода геологический разрез, отображающий в сосуществовании всю историю развития нервных систем, начиная от диффузных невропилей низших беспозвоночных и простейших спинальных рефлекторных дуг первобытных хордовых. Все это воспроизведено в такой высокоорганизованной нервной системе, в ее последовательных наслоениях, этажах и надстройках с не меньшей точностью, чем, например, индивидуальная история дерева - в его древесных кольцах.
На фоне этого факта представляется очень интересным и многозначительным, что координационные контингенты движений человека образуют точно такого же рода симультанную рекапитуляцию всей истории животных движений, начиная от таких прадвижений, как перистальтикоподобные движения кольчатого червя или глотательно-рвотные движения голотурии. Такая рекапитуляция обнаруживает при этом неоспоримые преимущества перед невроморфологией, поскольку воспроизводит филогенез не в статике и не в символике гистологических обликов нервных ядер, ничего не сообщающих нам о своей функциональной сущности, а в динамике, в самих движениях, доступных точным сравнениям как по своему содержанию и смыслу, так и по своему оформлению, с движениями современных нам представителей всех ступеней филогенетической лестницы. У самого дна глубокой шахты, опускаемой нами в толщу двигательных координации человека, мы находим древнейшие палеокинетические координации, отошедшие у высших позвоночных в удел вегетативным отправлениям: перистальтические движения кишечника, стрикционно-дилятационные движения в сосудистой системе, сфинктерах желудка, желчного пузыря, прямой кишки и т.д. Поднимаясь выше, мы встречаемся с первичными, самыми элементарными и по структуре, и по определяющей их афферентации неокинетическими координациями - спинальными рефлексами, подробно изученными школой Sherrington. Еще выше мы вступаем в область движений с более сложной биологической мотивировкой и с афферентацией, синтетически включающей как телерецепции, так и индивидуальные мнестические компоненты, - в область подлинной психофизиологии. Еще более кверху, еще в большей и более невозместимой мере зависящие от деятельности коры полушарий залегают самые молодые в филогенезе специфически человеческие координации, мотивы к возникновению которых уже никак нельзя свести к чисто биологической причинности: в первую очередь координации речи, письма и предметных, трудовых действий с их социально-психологической обусловленностью. Каждое из этих последовательных наслоений связано с очередным новым морфологическим субстратом, и каждое, как будет показано ниже, не отрицает нижележащих, более древних координационных напластований, но сливается с ними в очень своеобразный и многообразный синтез.
В последующих главах, начиная с третьей, будут даны общие характеристики этих последовательно формировавшихся и образовавших иерархическую систему уровней построения; попутно будут охарактеризованы важнейшие общие факты, относящиеся к теории координационной функции. Предварительно, однако, должны быть сделаны некоторые общие разъяснения.
Глава вторая.
О ПОСТРОЕНИИ ДВИЖЕНИЙ
Двигательная система позвоночных включает в себя: а) пассивную часть - жесткий сочлененный скелет и б) активную часть - поперечнополосатую мускулатуру со всем ее оснащением. Пассивный двигательный аппарат составляется из костных звеньев, располагающихся преимущественно вдоль оси органов (аксиально), а потому не обеспечивающих устойчивости системы без постоянного активного участия мускулатуры5. Эти звенья подвижно сочленены между собой, образуя так называемые кинематические цепи. Мышечные массивы, анатомическое членение которых на отдельные мускулы имеет по большей части чисто морфологическое основание, без существенной значимости для биодинамики, облекают эти аксиальные кинематические цепи снаружи, повинуясь в своем размещении также преимущественно причинам чисто морфогенетического порядка, поскольку (эта теорема очень легко доказывается) биодинамическое и решающе важное значение имеет расположение и направление концевых отрезков мышечных сухожилий, в то время как расположение мышечных брюшков не имеет никакого. В дальнейшем под скелетными кинематическими цепями будут подразумеваться не одни только кости с их суставами, а подвижные органы, взятые в целом.
Мера взаимной подвижности двух звеньев кинематической цепи определяется в механике числом так называемых степеней свободы подвижности и деформируемости. Каждая степень свободы подвижности более или менее точно совпадает с отдельным, независимым направлением подвижности в том или другом суставе. Одноосные, например блоковидные, суставы обладают одной степенью; яйцевидные и седловидные суставы (соответствующие примеры: лучезапястный сустав и запястно-пястный сустав большого пальца руки) имеют по две, шаровидные суставы - по три степени свободы подвижности. Степени свободы подвижности характеризуют собой не размах или количественную меру подвижности (например, сгибаемости на большее или меньшее число градусов в сочленении), а качественную меру многообразия направлений и форм этой подвижности, которое может в некоторых случаях оказаться очень большим и при умеренных количественных амплитудах. Примерами могут служить: подвижность локтевой кости относительно плечевой, имеющая одну степень свободы, и деформируемость грудного отдела позвоночного столба, теоретически насчитывающая их 66.
Число степеней свободы взаимной подвижности звеньев кинематической цепи (или, иными словами, свободы деформируемости кинематической цепи) есть не что иное, как необходимое и достаточное число независимых друг от друга координат, которые должны быть назначены для того, чтобы поза органа оказалась вполне определенной. Так, например, для определения положения плеча относительно лопатки (при наличии у лопаточно-плечевого сочленения трех степеней свободы) необходимо и достаточно назначить три координаты (например, координаты сгибания - разгибания, приведения - отведения, продольной ротации). Очень важно отметить, что количество степеней свободы цепи не зависит от выбора той или иной системы координат или обозначений, т.е. является объективно присущим самой цепи. Заметим еще, что число степеней свободы деформации многозвенной цепи либо равно сумме чисел степеней свободы всех ее сочленений (так называемые незамкнутые цепи), либо несколько меньше ее (замкнутые цепи).
Подвижности кинематических цепей человеческого тела огромны и исчисляются девятками степеней свободы. Подвижность запястья относительно лопатки и подвижность предплюсны относительно таза насчитывают по 7 степеней, кончика пальца относительно грудной клетки - 16 степеней. Обладание подвижными пальцами обогащает подвижность и деформируемость руки по сравнению с передней конечностью, например, однокопытных четвероногих на 22 добавочных степени. Для сравнения укажем, что преобладающее большинство машин, работающих без непрерывного управления человеком, обладает при всей кажущейся сложности рычажных и шестеренных кинематических цепей всего одной степенью свободы, т.е. тем, что носит название вынужденного движения: например, многоцилиндровый дизель или газетопечатная ротационная машина. Две степени встречаются редко (например, центробежные регуляторы), три степени совершенно неупотребительны - настолько бурно возрастает сложность управления кинематическими цепями с прибавлением новых степеней свободы. Теоретически шестью степенями свободы обладает летящий снаряд (пушечное ядро, пуля, мина) - предмет изучения внешней баллистики. Здесь необходимо отметить: а) очень большую неточность управления его полетом и попаданием и б) необходимость пристрелки и корректировки, к чему мы еще вернемся ниже.
Указанное первое резкое отличие кинематических цепей живого тела от искусственных машин должно быть самым выразительным образом подчеркнуто.
Отсутствие в искусственных машинах кинематических цепей с многими степенями свободы объясняется чрезвычайно большими трудностями управления движениями таких цепей. Самая основная из них состоит вот в чем. Одна степень свободы характеризует при любой сложности и многозвенности кинематической цепи так называемый вынужденный тип движения. Это значит, что в подобной системе каждая из ее подвижных точек неотрывно привязана к одной определенной траектории. Эта траектория может обладать любой формой, простой или сложной; точка имеет возможность двигаться по ней вперед или назад, быстрее или медленнее и т.д., но сам по себе путь движения для нее предрешен. Появление у системы еше хотя бы одной степени свободы сверх первой означает переход от одной траектории для каждой точки не к нескольким или даже многим, а к целому участку некоторой поверхности, по которой точка с двумя степенями свободы получает возможность двигаться абсолютно любым образом по бесчисленному множеству равнодоступных траекторий. Так, например, кончик пера, пока он не отрывается от поверхности бумаги, обладает двумя степенями свободы; при этом, очевидно, разнообразие доступных ему траекторий совпадает с разнообразием всего того, что когда-либо могло быть или было написано и нарисовано пером на листе бумаги.
Таким образом, переход от одной степени свободы, т.е. от вынужденного типа подвижности, к двум или нескольким степеням знаменует собой возникновение необходимости выбора или трассирования траектории движения. Живой организм всегда имеет возможность обосновать свой выбор и планировку той или другой траектории; для машины же необходимо в подобном случае предусмотреть специальное устройство, способное целесообразно обеспечить такого рода выбор, иначе движение будет обречено на хаотичность. Примером устройства указанного характера может служить автоматический жиро-пилот. Подвижность судна (рассматриваемого как материальная точка) на поверхности моря имеет как раз две степени свободы; жиро-пилот обеспечивает выбор среди бесконечного количества разновозможных для корабля траекторий той из них, которая отвечает заданному компасному курсу.
Следовательно, как вытекает из всего рассмотренного выше, между одной и несколькими степенями свободы имеет место очень важный принципиальный качественный скачок. Крайняя редкость в технике невынужденных подвижных систем объясняется прежде всего именно трудностями устройств для автоматического непрерывного целесообразного выбора. Кроме того, при многих степенях свободы у системы суммируются, конечно, и погрешности, приносимые каждой из степеней свободы; при большом количестве последних суммарная ошибка сможет вырасти до такой величины, которая покроет все преимущества, в принципе создаваемые богатым разнообразием подвижности сложной цепи. Например если каждая из степеней свободы руки и пальца пианиста, сидящего за инструментом, даст погрешность всего в 1 °, то, суммируясь, эти погрешности смогут дать отклонение кончика пальца на 5 - 6 см (хотя по отдельным звеньям, например, пальцевых фаланг, составляющие погрешности не превысят при этом 0,05 см), т.е. вызовут промахивание на терцию или кварту. Необходимо еще принять в расчет неизбежную кумуляцию погрешностей во времени, не устранимую никакой феноменальной точностью первоначальной пригонки движущихся частей, к тому же в кинематических цепях живого тела позвоночника заведомо не очень высокой.
Еще более существенное значение имеют осложнения динамические. В сложной кинематической цепи, каждое звено которой обладает известной тяжелой и инертной массой, всякая сила, возникающая в одном из звеньев, тотчас же вызывает целую систему реактивных или отраженных сил, передающихся на все остальные звенья. Это взаимное влияние звеньев цепи друг на друга во всех мыслимых сочетаниях создает в общей совокупности огромное количество силовых взаимодействий,
Дата добавления: 2021-01-11; просмотров: 416;