Основные функции нейронов и их взаимодействия


Основными структурными элементами нервной системы явля­ются нервные клетки или нейроны. Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между не­рвной системой и различными участками тела. В нейронах происхо­дят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.

Таким образом, основными функциями нейронов являются: вос­приятие внешних раздражений — рецепторная функция, их переработка — интегративная функция и передача нервных влияний на другие нейроны или различные рабочие органы — эффекторная функция. В теле нервной клетки, или соме, происходят основные процессы переработки информации. Многочисленные древовидно разветвленные отростки — дендриты (греч. дендрон — дерево) служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток — аксон (греч. аксис — ось), который передает нервные импульсы дальше —дру­гой нервной клетке или рабочему органу (мышце, железе). Осо­бенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки — аксонный холмик нейрона. Именно в этом сегменте клетки возникает нервный импульс.

Нейроны подразделяются на три основных типа: афферентные, эфферентные и промежуточные. Афферентные нейроны (чувствительные, или центростремительные) передают информа­цию от рецепторов в ЦНС. Тела этих нейронов расположены вне ЦНС — в спинномозговых узлах и в узлах черепных нервов. Аффе­рентные нейроны имеют длинный отросток — дендрит, который контактирует на периферии с воспринимающим образованием — ре­цептором или сам образует рецептор, а также второй отросток — ак­сон, входящий через задние рога в спинной мозг.

Эфферентные нейроны (центробежные, двигательные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из ЦНС к рабочим органам. Для эффе­рентных нейронов характерны разветвленная сеть коротких отрост­ков — дендритов и один длинный отросток — аксон.

Промежуточные нейроны (интернейроны, или вставочные, контактные) — более мелкие клетки, осуществляю­щие связь между различными (в частности, афферентными и эффе­рентными) нейронами. Они передают нервные влияния в горизон­тальном направлении (например, в пределах одного сегмента спин­ного мозга) и в вертикальном (например, из одного сегмента спинно­го мозга в другие — выше или нижележащие сегменты). Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов.

Взаимодействие нейронов между собой (и с эффекторными орга­нами) происходит через специальные образования — синапсы (греч. — контакт). Они образуются концевыми разветвлениями ней­рона на теле или отростках другого нейрона. Чем больше синапсов на нервной клетке, тем больше она воспринимает различных раздраже­ний и, следовательно, шире сфера влияний на ее деятельность и воз­можность участия в разнообразных реакциях организма. Особенно много синапсов в высших отделах нервной системы и именно у ней­ронов с наиболее сложными функциями.

В структуре синапса различаюттри элемента (рисунок 9.1):

1)пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона;

2)синаптическую щель между нейронами;

3)постсинаптическую мембрану — утолщение прилегающей поверхности следующего нейрона.

В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части кон­такта имеются синоптические пузырьки, которые содержат специаль­ные вещества — медиаторы или посредники. Ими могут быть ацетилхолин (в некоторых клетках спинного мозга, в вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон, в гипоталамусе), некоторые аминокислоты и др. Приходящие в окон­чания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель.

По характеру воздействия на последующую нервную клетку разли­чают возбуждающие и тормозящие синапсы.

А Б

А: 1 – тело аксона; 2 — митохондрия; 3 — синаптические пузырьки,

4 — пресинаптическая мембрана, 5 — синаптическая щель,

6 — постсинаптическая мембрана, 7 — рецепторы и поры дендрита следующего нейрона.

Б: направление проведения возбуждения

 

Рисунок 9.1 – Схема строения синапса и проведения возбуждения

 

В возбуждающих синапсах медиаторы (например, ацетилхолин) связываются со специфическими макромолекулами постсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1мс) колебание мембранного потенциала в сторону делоляризации ил и возбуждающий постсинаптический потенциал (ВПСП). Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня. Для этого величина деполяризационного сдвига мембранного потенциала должна составлять не менее 10 мВ. Действие медиатора очень кратковременно (1-2 мс), после чего он расщепляется на неэф­фективные компоненты (например, ацетилхолин расщепляется фер­ментом холинэстеразой на холин и уксусную кислоту) или поглощается обратно пресинаптическими окончаниями.

В тормозящих синапсах содержатся тормозные медиаторы (например, гамма-аминомасляная кислота). Их дей­ствие на постсинаптическую мембрану вызывает усиление выхода ионов калия из клетки и увеличение поляризации мембраны. При этом регистрируется кратковременное колебание мембранного по­тенциала в сторону гиперполяризации — тормозящий постси­наптический потенциал (ТПСП). В результате нервная клетка оказывается заторможенной. Возбудить ее труднее, чем в ис­ходном состоянии. Для этого понадобится более сильное раздраже­ние, чтобы достичь критического уровня деполяризации.

Рассмотрим, как происходит возникновение импульсного ответа нейрона.

На мембране тела и дендритов нервной клетки находятся как воз­буждающие, так и тормозящие синапсы. В отдельные моменты вре­мени часть их может быть неактивной, а другая часть оказывает ак­тивное влияние на прилегающие к ним участки мембраны. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов. При одновремен­ном влиянии как возбуждающих, так и тормозящих синапсов проис­ходит алгебраическое суммирование (т.е. взаимное вычитание) их эффектов. При этом возбуждение нейрона возникнет лишь в том случае, если сумма возбуждающих постсинаптических потенциалов окажется больше суммы тормозящих. Это превышение должно со­ставлять определенную пороговую величину (около 10 мВ). Только в этом случае появляется потенциал действия клетки. Следует отме­тить, что в целом возбудимость нейрона зависит от его размеров: чем меньше клетка, тем выше ее возбудимость.

С появлением потенциала действия начинается процесс проведе­ния нервного импульса по аксону и передача его на следующий ней­рон или рабочий орган, т.е. осуществляется эффекторная функция нейрона. Нервный импульс является основным средством связи между нейронами.

Таким образом, передача информации в нервной систем происхо­дит с помощью двух механизмов — электрического механизма (ВПСП; ТПСП; потенциал действия) и химического механизма (медиаторы).



Дата добавления: 2016-09-06; просмотров: 8084;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.