Типовые топологии DWDM


 

Хронологически первой областью применения технологии DWDM (как и технологии SDH) стало создание сверхдальних высокоскоростных магистралей, имеющих топологию двухточечной цепи (рис. 12.10).

Для организации такой магистрали достаточно в ее конечных точках установить терминальные мультиплексоры DWDM, а в промежуточных точках — оптические усилители, если этого требует расстояние между конечными точками.

Рисунок 12.10 - Сверхдальняя двухточечная связь на основе терминальныхмультиплексоров DWDM

 

В приведенной на рисунке схеме дуплексный обмен между абонентами сети происходит за счет однонаправленной передачи всего набора волн по двум волокнам. Существует и другой вариант работы сети DWDM, когда для связи узлов сети используется одно волокно.

Дуплексный режим достигается путем двунаправленной передачи оптических сигналов по волокну — половина волн частотного плана передают информацию в одном направлении, половина — в обратном.

Естественным развитием топологии двухточечной цепи является цепь с промежуточными подключениями, в которой промежуточные узлы выполняют функции мультиплексоров ввода-вывода (рис. 12.11).

Рисунок 12.11 - Цепь DWDM с вводом-выводом в промежуточных узлах

Оптические мультиплексоры ввода-вывода (Optical Add-Drop Multiplexer, OADM) могут вывести из общего оптического сигнала волну определенной длины и ввести туда сигнал этой же длины волны, так что спектр транзитного сигнала не изменится, а соединение будет выполнено с одним из абонентов, подключенных к промежуточному мультиплексору.

OADM поддерживает операции ввода-вывода волн сугубо оптическими средствами или с промежуточным преобразованием в электрическую форму. Обычно полностью оптические (пассивные) мультиплексоры ввода-вывода могут отводить небольшое число волн, так как каждая операция вывода требует последовательного прохождения оптического сигнала через оптический фильтр, который вносит дополнительное затухание. Если же мультиплексор выполняет электрическую регенерацию сигнала, то количество выводимых волн может быть любым в пределах имеющегося набора волн, так как транзитный оптический сигнал предварительно полностью демультиплексируется.

Кольцевая топология (рис. 12.12) обеспечивает живучесть сети DWDM за счет резервныхпутей. Методы защиты трафика, применяемые в DWDM, аналогичны методам в SDH. Для того чтобы какое-либо соединение было защищено, между его конечными точками устанавливаются два пути: основной и резервный. Мультиплексор конечной точки сравнивает два сигнала и выбирает сигнал лучшего качества.

Рисунок 12.12 - Кольцо мультиплексоров DWDM

 

По мере развития сетей DWDM в них все чаще будет применяться ячеистая топология (рис. 4), которая обеспечивает лучшие показатели в плане гибкости, производительности и отказоустойчивости, чем остальные топологии. Однако для реализации ячеистой топологии необходимо наличие оптических кросс-коннекторов (Optical Cross-Connector, ОХС), которые не только добавляют волны в общий транзитный сигнал и выводят их оттуда, как это делают мультиплексоры ввода-вывода, но и поддерживают произвольную коммутацию между оптическими сигналами, передаваемыми волнами разной длины.

Рисунок 12.13 - Ячеистая топология DWDM


Лекция №13



Дата добавления: 2020-11-18; просмотров: 619;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.