Математико-статистичні методи вивчення зв'язків
Математико-статистичні методи вивчення зв'язків, іншими словами, стохастичне моделювання, є деякою мірою доповненням і поглибленням детермінованого аналізу. В аналізі фінансово-господарської діяльності стохастичні моделі використовуються, коли необхідно:
- оцінити вплив факторів, через які не можна побудувати жорстко детерміновану модель;
- вивчити і порівняти вплив факторів, котрі неможливо включити в ту саму детерміновану модель;
- виділити й оцінити вплив складних факторів, що не можуть бути виражені одним визначеним кількісним показником.
На відміну від детерміністського стохастичний підхід для своєї реалізації вимагає виконання ряду передумов. У першу чергу, мова йде про наявність досить великої сукупності об'єктів (жорстко детерміновану модель можна аналізувати й будувати за одним об'єктом, для стохастичної ж моделі необхідна сукупність). Крім того, необхідний достатній обсяг спостережень: за одним – двома спостереженнями судити про характер стохастичного зв'язку не можна.
Використання стохастичних моделей в економіці, на відміну від використання їх у техніці, має певні труднощі, пов'язані з одержанням сукупності об'єктів достатнього обсягу. У техніці експеримент можна повторити, в економіці цього зробити не можна. Це приводить до дискусії про правомірність використання статистичних методів при побудові факторних моделей в аналізі діяльності підприємств, оскільки при цьому нерідко приходиться працювати в умовах малих вибірок (менш 20 спостережень), а крім того, у теорії статистики вважається, що при побудові регресії кількість спостережень повинна у 6-8 разів перевищувати кількість факторів, що вкрай рідко зустрічається в аналізі фінансово-господарської діяльності підприємств.
Оскільки стохастична модель – це, як правило, рівняння регресії, при її побудові повинні виконуватися наступні умови:
- випадковість спостережень;
- наявність однорідності сукупності як якісної, так і кількісної;
- наявність спеціального математичного апарата (наприклад, інструменти аналізу автокореляцій для аналізу рядів динаміки).
Основна сфера додатка стохастичних моделей – це проблемно-орієнтований і тематичний аналіз. Стохастичне моделювання призначене для рішення трьох основних задач:
- установлення самого факту наявності (чи відсутності) статистично значимого зв'язку між досліджуваними ознаками;
- прогнозування невідомих значень результативних показників за заданим значенням факторних ознак (задачі екстраполяції й інтерполяції);
- виявлення причинних зв'язків між досліджуваними показниками, вимірювання ступеня їхнього наближення і порівняльний аналіз ступеня впливу.
Кореляційний аналіз
Кореляційний аналіз є методом установлення вимірювання і зв'язку між спостереженнями, які можна вважати випадковими й обраними із сукупності, розподіленої за багатомірним нормальним законом.
Кореляційним зв'язком називається такий статистичний зв'язок, при якому різним значенням однієї перемінної відповідають різні середні значення іншої. Виникати кореляційний зв'язок може декількома шляхами. Найважливіший із них – причинна залежність варіації результативної ознаки від зміни факторного. Крім того, такий вид зв'язку може спостерігатися між двома наслідками однієї причини. Основною особливістю кореляційного аналізу варто визнати те, що він встановлює лише факт наявності зв'язку і ступінь його тісності, не розкриваючи її причин.
У статистиці щільність зв'язку може визначатися за допомогою різних коефіцієнтів (Фехнера, Пірсона, коефіцієнта асоціації і т. ін.), а в аналізі господарської діяльності частіше використовується лінійний коефіцієнт кореляції.
Регресивний аналіз
Регресивний аналіз – це метод встановлення аналітичного вираження стохастичної залежності між досліджуваними ознаками. Рівняння регресії показує, як у середньому змінюється Y при зміні кожного з Хi і має вигляд:
Y = f(x1, x2, ..., xn), (1.9)
де Y – залежна перемінна (вона завжди одна);
Хі – незалежні перемінні (фактори) (їх може бути небагато).
Якщо незалежна перемінна одна – це простий регресивний аналіз. Якщо ж їх декілька (n ³ 2), то такий аналіз називається багатофакторним.
У ході регресивного аналізу приймають до уваги дві основні задачі:
- побудову рівняння регресії, тобто перебування виду залежності між результатним показником і незалежними факторами x1, x2, ..., xn ;
- оцінку значимості отриманого рівняння, тобто визначення того, наскільки обрані факторні ознаки пояснюють варіацію ознаки Y.
Застосовується регресивний аналіз головним чином для планування, а також для розробки нормативної бази.
На відміну від кореляційного аналізу, що тільки відповідає на запитання, чи існує зв'язок між аналізованими ознаками, регресійний аналіз дає і її формалізоване вираження. Крім того, якщо кореляційний аналіз вивчає будь-який взаємозв'язок факторів, то регресійний – однобічну залежність, тобто зв'язок, що показує, яким чином зміна факторних ознак впливає на результативну ознаку.
Регресивний аналіз – один із найбільш розроблених методів математичної статистики. Строго говорячи, для реалізації регресивного аналізу необхідне виконання ряду спеціальних вимог
(зокрема, x1, x2, ..., xn; Y повинні бути незалежними, нормально розподіленими випадковими величинами з постійними дисперсіями). У реальному житті сувора відповідність вимогам регресивного й кореляційного аналізів зустрічається дуже рідко, однак обидва ці методи дуже поширені в економічних дослідженнях. Залежності в економіці можуть бути не тільки прямими, але й зворотними і нелінійними. Регресивна модель може бути побудована при наявності будь-якої залежності, однак у багатофакторному аналізі використовують тільки лінійні моделі.
Кластерний аналіз
Кластерний аналіз – один із методів багатомірного аналізу, призначений для угруповання (кластеризації) сукупності, елементи якої характеризуються багатьма ознаками. Значення кожної з ознак служать координатами будь-якої одиниці досліджуваної сукупності в багатомірному просторі ознак. Усяке спостереження, що характеризується значеннями декількох показників, можна представити як крапку в просторі цих показників, значення яких розглядаються як координати в багатомірному просторі.
Основним критерієм кластеризації є те, що розходження між кластерами повинні бути більш істотними, ніж між спостереженнями, віднесеними до одного кластера.
Так само, як і процедури регресивного аналізу, процедура кластеризації досить трудомістка, її доцільно виконувати на комп'ютері.
Дисперсійний аналіз
Дисперсійний аналіз – це статистичний метод, який дозволяє підтвердити чи спростувати гіпотезу про те, що дві вибірки даних відносяться до однієї головної сукупності. Стосовно аналізу діяльності підприємства можна сказати, що дисперсійний аналіз дозволяє визначити, чи до однієї і тієї ж сукупності, а чи до різних відносяться групи спостережень.
Дисперсійний аналіз часто використовується разом з методами угруповання. Задача його проведення в цих випадках складається в оцінці істотності розходжень між групами.
Дата добавления: 2016-07-27; просмотров: 2147;