Образец протокола в методе оценки


Протокол № 2

Показатели Оценочные категории (k) Число проб
Число случаев, когда испытуемый в стимульной пробе выбирал данную оценочную категорию - (k/s)
Число случаев, когда испытуемый в пустой пробе выбирал данную оценочную категорию - (k/n)
Общее число случаев, когда испытуемый выбрал данную категорию: (k/s)+ (k/n)

Протокол №1 метода оценки, в котором фиксируются ответы испытуемого в каждой пробе, не приводится, поскольку он во многом сходен с протоколами в методе «Да-Нет» (см. табл.6 и 7). Отличие протоколов состоит в том, что отсутствует графа «Исход пробы», а в графе «Ответ испытуемого» проставляется номер оценочной категории, которую испытуемый использовал в текущей пробе.

 

Обработка результатов. Использование нескольких оценочных категорий по сути означает усложнение процесса принятия решений. Для решения поставленной задачи - отнесения результата наблюдения (сенсорного события s) в очередной пробе к той или иной категории из k используемых, испытуемый должен:

1) определить столько значений порога принятия решения λ0, чтобы они позволили разделить все множество сенсорных эффектов s на k классов (областей) – для этого необходимо (k - 1) значений λ0;

2) на оси сенсорных эффектов s, согласно этим значениям λ0, определить (расположить) k - 1 критических значений s0, разделяющих всю ось s на k областей, соответствующих заданным критериям оценок.

 

На рис.15 приведен пример расположения s0 на оси s при условии

k = 5 в соответствии с теоретическими представлениями, изложенными в разделе 2.2.

Следует отметить, что в реальном эксперименте вряд ли s0 будут располагаться так же равномерно по оси s, однако сути дела это не изменяет.

 

 

Рис.15. Соотношение распределений плотности вероятности, оценочных категорий и критических значений s0 в теоретической модели метода оценки

 

Как видно на рис.15, для использования пяти оценочных категорий необходимо разместить на оси сенсорных событий s четыре значения s0 : s0(1), s0(2), s0(3), и s0(4), которые разбивают всю ось s на пять частей, соответствующих числу категорий оценки.

Введем некоторые новые величины, необходимые для дальнейшего рассмотрения метода:

P(k/s) – вероятность того, что сенсорный эффект, вызванный стимулом, отнесен к k-той оценочной категории;

P(k/n) – вероятность того, что сенсорный эффект, вызванный шумом (пустой пробой), отнесен к k-той оценочной категории.

Эти величины рассчитываются следующим образом:

 

; (24а)

 

. (24b)

 

Например, в соответствии с данными, приведенными в таблице 9 для 2-ой оценочной категории, получим:

 

 

.

Проведя соответствующие вычисления для всех категорий, получаем данные, приведенные в табл.10 P(k/s) и P(k/n) для всех пяти значений оценочных категорий.

 

Таблица 10

Значения P(k/s) и P(k/n) для всех оценочных категорий

Показатели Оценочные категории (k)
P(k/s) 0,11 0,25 0,54 0,73 0,95
P(k/n) 0,89 0,75 0,46 0,27 0,05

 

Определенные таким образом значения P(k/s) и P(k/n) имеют достаточно простой смысл в графической интерпретации – как площади под соответствующей функцией f(s) или f(n) , взятые от одного значения s0 до другого, и в аналитической – как интегралы этих функций на заданных соседними значениями s0 отрезках s.

По сути дела такой подход означает, что мы пришли к теоретической модели, которая применялась в методе “Да – Нет” при использовании приемов получения нескольких значений λ0 и s0 в нескольких отдельных экспериментальных сериях (см. раздел 2.3.1). теперь эти несколько значений λ0 и s0 мы получаем в одномэксперименте за счет использования нескольких оценочных категорий. Вопрос заключается в том, как по полученным данным рассчитать пары значений Pобн и Pлт, необходимые для построения PX и оценки .

Рассмотрим, как рассчитываются Pобн и Pлт в методе оценки, если в нем используется, например, пять оценочных категорий (как и в примере, приведенном выше). Определим необходимые для этого величины следующим образом:

Ps(k) – вероятность отнесения сенсорного эффекта, вызванного стимулом, в k-ю категорию;

Pn(k) –вероятность отнесения сенсорного эффекта, вызванного пустой пробой, в k -ю категорию.

Тогда значения P(k)обн и P(k)лт, рассчитываемые для соответствующих четырех значений λ0 и s0(k), будут определяться способом, описанным в табл.11.]

Применим теперь подход, изложенный в таблице 11, к экспериментальным данным, содержащимся в таблице 9.

Поскольку число стимульных и пустых проб было равным - по 250, то, учитывая величины и из таблицы (9), получим:

 

Ps(k)= , (25a)

 

Pn(k)= . (25b)

Рассчитанные по формулам (25a,b) значения вероятности обнаружения и ложной тревоги для всех оценочных категорий приведены в табл.12.

 

Таблица 11

Способ расчета Pобн и Pлт в методе оценки

Значение s0(k) Оценочные категории, учитываемые при расчете P(k)обн и P(k)лт Величины P(k)обн и P(k)лт, ожидаемые согласно теоретическому подходу в методе оценки
s0(4) P(4)обн = Ps(5) P(4)лт = Pn(5)
s0(3) 5+4 P(3)обн = Ps(5) + Ps(4) P(3)лт = Pn(5) + Pn(4)
s0(2) 5+4+3 P(2)обн = Ps(5) + Ps(4) + Ps(3) P(2)лт = Pn(5) + Pn(4) + Pn(3)
s0(1) 5+4+3+2 P(1)обн = Ps(5) + Ps(4) + Ps(3) + Ps(2) P(1)лт = Pn(5) + Pn(4) + Pn(3) + Pn(2)

 

После проведения вычислений получены 5 пар значений Pобн и Pлт, из которых четыре можно использовать для построения PX и расчета . Значения Pобн и Pлт, полученные для 1-ой оценочной категории, в дальнейшем не рассматриваются, так как их величина по определению всегда должна быть равна 1.

 

Таблица 12

Значения вероятности обнаружения и ложной тревоги для всех s0

Показатели Оценочные категории
Вероятность отнесения стимула к данной оценочной категории Ps(k) 0,05 0,10 0,20 0,30 0,35
Вероятность обнаружения стимула P(k)обн 1,00 0,95 0,85 0,65 0,35
Вероятность отнесения пустой пробы к данной оценочной категории Pn(k) 0,39 0,31 0,17 0,11 0,02
Вероятность ложной тревоги P(k)лт 1,00 0,61 0,30 0,13 0,02

 

Для построения PX и расчета переведем нужные величины P(k)обн и P(k)лт в шкалу Z. Результаты пересчета даны в табл.13.

 

Таблица 13

Значения вероятности обнаружения и ложной тревоги для всех s0

В Z-единицах

 

Показатели Оценочные категории
Z(k)обн - 1,64 1,04 0,39 -0,39
Z(k)лт - 0,28 -0,52 -1,13 -2,05

 

Рабочая характеристика, соответствующая данным табл.13, изображена на рис.16 и представляет собой отрезок прямой, проходящий через четыре точки. Определение параметров линейной функции, аппроксимирующей экспериментальные данные, осуществляется по методу наименьших квадратов, описание которого можно найти в любом руководстве по математической статистике.

Поскольку в методе оценки получается несколько пар (точнее – (k – 1) пара) значений Z(k)обн и Z(k)лт (в рассматриваемом примере четыре), то может быть рассчитано и столько же значений показателя чувствительности . В теории или в идеальном эксперименте все эти значения должны совпасть. Однако в реальном эксперименте этого не происходит. Поэтому в качестве итогового показателя чувствительности может быть взято среднее арифметическое значение всех полученных значений , каждое из которых рассчитывается согласно формуле (23):

= . (26)

 

В примере, согласно данным табл.13, имеем: 2 = 1,36; 3 = 1,56; 4 = 1,52; 5 = 1,66, и, соответственно:

 

=

 

Обращает на себя внимание еще один возможный показатель, который может быть получен в методе оценки – ширина диапазона изменений порогов принятия решения λ0 , возникновение которого обусловлено использованием нескольких оценочных категорий. Это уже характеристика механизмов принятия решения, отражающих психологические особенности личности испытуемого. Косвенно величина этого показателя ( Δλ0 ) может быть оценена через разброс значений Zобн и Zлт для крайних из использованных значений оценочных категорий k.

 
 

Теоретически такой разброс значений должен быть одинаков для Zобн и Zлт – графически (см. рис.16) величина разброса представляет собой расстояние между крайними точками РХ, взятое либо по оси Zобн, либо по оси Zлт. Однако на практике такое равенство встречается редко и является исключением.

 

Рис.16. РХ, построенная по данным метода оценки

 

Поэтому можно использовать процедуру приближенного вычисления величины разброса D(λ0), представляющую собой косвенную оценку величины Δλ0:

 

D(λ0) = [(Z(2)обн – Z(k)обн)+ (Z(2)лт – Z(k)лт)] ∕ 2. (27)

 

Так, для данных нашего примера:

 

D(λ0) = [(1,64 – (-0,39))+ (0,28 – (-2,05))] ∕ 2 = 2,18

 

Значение величины D(λ0), меняющееся в пределах от нуля до шести, позволяет оценить пластичность испытуемого, его способность изменять критерии, используемые при выполнении задания. В определенной степени это значение отражает и готовность испытуемого к применению более рискованной («смелой») стратегии оценивания.

 



Дата добавления: 2016-07-27; просмотров: 1338;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.018 сек.