Перекрестные коэффициенты эластичности.


В 1.1.2 было введено понятие эластичности функции одной переменной. Аналогично вводится понятие эластичности фун­кции нескольких переменных. Пусть, например, z =f(x, у) – функция двух переменных.

Еzx –коэффициент эластичности z по х показывает, на сколько процентов изменится z при увеличении х на один процент. Е – коэффициент эластичности z по у показывает, на сколько процентов изменится z при увеличении y на один процент.

Из определения вытекают следующие формулы:

(1.1.2)

Пример1.1.2. Найти коэффициенты эластичности по х и по у функции z= xy в точке (2;3).

Согласно формулам (1.1.2) имеем

Еzx(х,у) = x(lnz)'x = x(ylnx)'x= у,

Ezy(x,y) = y(lnz)'y = y(ylnx)'y =уlnх.

Следовательно, Еzx(2,3) =3, Еzy(2;3) = 3ln 2.

Формулы (1.1.2) полностью аналогичны формулам, которые использовались при выводе свойств 13 эластичности в 1.1.2. По­этому первые три свойства эластичности справедливы и в случае функции нескольких переменных. Четвертое и пятое свойства также сохраняются, но формы их записи становятся сложнее. Ос­тановимся подробнее на этих свойствах.

Свойство 4'. Для функций z =f(x, у), х = j(t) и у = y(t) эластичность z no t в точке t0 находится по формуле

Еzt = ЕzxЕxt + ЕzyЕyt , (1.1.3)

где Еzx, Еzy эластичности z по х и у в точке (j(t0), y(t0)), а Еxt, Еytэластичности х и у по t в точке t0.

Для любой пары функций у1=f1(х1, х2), y2=f2(x1, x2) имеем 4 коэффициента эластичности, которые запишем в матрицу размера 2х2:

Элементы этой матрицы, расположенные вне главной диагонали, называютсяперекрестными коэффициентами эластичности.

Свойство 5'.Пусть х1=g1(y1, y2), x2=g2(y1, y2) пара обратных функций для функций у1=f1(х1, х2), y2=f2(x1, x2). Тогда матрица коэффициентов эластичности Еxy является об­ратной к матрице Еyx.

Коэффициенты эластичности используются при анализе функ­ций спроса при любом числе различных товаров. В качестве при­мера рассмотрим случай с двумя товарами. Пусть хi количе­ство i-го товара, рi его цена (i= 1,2). Для пары дополняющих товаров (например, чай и сахар) или заменяющих товаров (напри­мер, масло и маргарин) естественно считать, что спрос на каж­дый товар зависит от обеих цен р1 и р2:

х1=D1(p1, p2), x2=D2(p1, p2) (1.1.4)

Предположим, что не только цены определяют спрос, но и, напро­тив, спрос определяет цены. Иными словами, будем считать, что систему (1.2.4) можно разрешить относительно р1 и р2 в следую­щем виде:

p1=p1(х1, х2), p2=p2(x1, x2). (1.1.5)

Системы (1.1.4) и (1.1.5) определяют две пары взаимно обратных функций. Согласно свойству 5' матрица коэффициентов эластич­ности цен по спросу может быть найдена как обратная матрица коэффициентов эластич­ности спроса по цене.

Пример1.1.3. Пусть х1=10p1-1.2 p20.8, x2=12p1-0.9p2-0.7. (x1 – маргарин, x2 – масло). Коэффициенты эластичности составят матрицу

Спрос на маргарин неэластичный, на масло – эластичный, перекрестные коэффициенты эластичности показывают, что маргарин заменяет масло – повышение цены на масло на 1% ведет к повышению спроса на маргарин на 0.8%. Чтобы получить коэффициенты эластичности цены по спросу Еху,достаточно найти обратную матрицу Еуx-1.



Дата добавления: 2020-10-25; просмотров: 412;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.