Основы моделирования спроса и потребления.


Основным понятием теории потребления являетсяфункция полезности U(x,у). Эта функция выражает меру полезности на­бора (х,у), где х – количество товара X, а у – количество товара Y. Чувствительность набора (х,у) к незначительному изменению х при фиксированном у называетсяпредельной полезностью х и определяется как частная производная U'х. Аналогично предельная полезность у определяется как U'у. Чаще всего линии уровня функции полезности (их еще называют кривыми безразличия) являются графиками убывающих функций. Поэтому мы будем считать, что для точек А(х0, у0) и В(х0 + Dх, у0 + Dу), расположенных на одной линии уровня приращения, Dх>0, а Dу < 0. (рис. 1.1.1).

В этом случае гово­рят, что Dх единиц первого товара замещается на (Dу) единиц второго товара (имеется в виду переход из точки В в точку А).

Предельной нормой замещения х на у в точке А называется предел отношения (Dу) /Dх , когда точка В стремится к А, оставаясь на одной с А линии уровня функции U(x, у). Предельная норма замещения обозначается MRSху или MRSху(А), если необходимо явно указать ее зависимость от точки А.

Предельная норма замещения одного товара дру­гим равна отношению их предельных полезностей.

(1.1.1)

Пример1.1.1. Найти предельную норму замещения х на у для функции полезности U(x,y) = ln х + ln y в точках: а) (3;12), б) (2;1).

Решение. а) По формуле (1.1.1) получаем

поэтому MRSху(3; 12) = 4.

б). Аналогично находим MRSху(2; 1) = 0,5.

В теории потребительского спроса на два блага х и у (к примеру, исследуемое х и все остальные у) предпочтения потребителя описываются функцией полезности U(x,y), a бюджетное ограничение (расходы потребителя не более его дохода) в случае, когда потребитель тра­тит весь свой доход на рассматриваемые блага: хрх+ уру = I, где I – доход потребителя, а рх и ру – цены благ х и у соответственно. Для того, чтобы построить графики этих неявно заданных функций у(х) в системе координат, где по оси абсцисс отложена величина блага х, а по оси ординат – у, нужно выразить в явном виде величину у как функцию от х для обеих зависимостей. Сделаем это для простейшей функции полезности U(x,y)=xy. Для уровня полезности (благосостояния) U0 и дохода I получаем следующие функции:

Графиком первой из этих функций (она называется кривой безразличия, т.к. показывает все пары (х,у), дающие одинаковое значение функции полезности) является гипербола, а графиком второй (бюджетного ограничения) – прямая линия, имеющая отрицательный наклон, равный по абсолютной величине относительной цене блага х и точку пересечения с осью ординат I/ру, соответствующую количеству блага у, которое можно приобрести по цене ру, если потратить на него весь доход I (построить график самостоятельно).

Другим примером функций в экономике служат функции спроса и предложения p(q), выражающие связь цены блага и величины спроса или предложения блага при постоянных вкусах потребителей, ценах на другие блага и других параметрах. Пример графика функции спроса и функции предложения приводится на рис. 1.1.2. График функции предложения, в отличие от функции спроса, отражает положительную связь переменных (D(q) – связь цены блага и величины спроса, S(q) – предложения).

 
 


р

q

Рис. 1.1.2

В модели потребительского спроса используются также функ­ции Торнквиста, моделирующие связь между величиной дохода I и величиной спроса потребителей х на:

а) малоценные товары

б) товары первой необходимости

в) товары второй необходимости

г) предметы роскоши

Соответствующие им графи­ки приведены на рис. 1.1.3.

Рис. 1.1.3



Дата добавления: 2020-10-25; просмотров: 397;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.