Затраты времени на чтение, матрица данных генеральной совокупности из пяти человек
Единицы генеральной совокупности | Затраты времени на чтение в среднем за день, мин |
1. Иван | |
2. Петр | |
З. Александр | |
4. Иосиф | |
5. Павел |
Искомая характеристика генеральной совокупности — средние затраты времени на чтение: 40 мин. Нормальные проектировщики выборки всего этого не знают — у них нет возможности обследовать всю генеральную совокупность из пяти семей — поэтому и начинают строить выборку. Допустим, что объем выборочной совокупности из 2 человек достаточен для заданного уровня надежности предсказания. Тогда мы можем начать процедуру отбора единиц исследования. Напомним, что все 5 человек имеют равные шансы быть опрошенны
26 Аналогичный пример рассматривается в учебнике Б.Ц. Урланиса «Общая теория статистики» (М.: Статистика, 1972), где элементы теории выборки изложены более подробно.
ми. Здесь не помешает и напоминание об аналогии социологического отбора со случайным процессом: как будто мы вынимаем из мешка шар и регистрируем его параметры. Поскольку объем выборки 2 человека, опросим Ивана и Павла, подсчитаем их средние затраты времени на чтение и зарегистрируем результат: 45 мин. Обследование завершено. В социологической практике опросы ограничиваются одной выборкой, а в нашем примере полезно осуществить и другие выборки из той же генеральной совокупности. Ведь кроме Ивана и Павла есть и иные единицы, имеющие такие же шансы быть обследованными. Произведем вторую выборку — опросим Ивана и Петра. Их средняя составит 15 мин. В третью выборку оба раза попал Павел — после регистрации результатов опроса единица возвращается в генеральную совокупность и может быть «вынута» вторично — такая выборка называется возвратной. Выборочная средняя «двойного» опроса Павла составляет 80 мин. Четвертый раз выпали Александр и Иосиф — средняя 45 мин. Предположим, в пятую выборку два раза вошел Иван, средняя составляет 10 мин. Мы видим, что все происходящее слишком случайно и, тем не менее, следует подсчитать ошибки выборки — разницу между значениями выборочной и генеральной совокупности по модулю (пока безразлично, какой знак имеет отклонение): (табл. 5.9)
Таблица 5.9
Затраты времени на чтение в пяти случайных выборках и соответствующие отклонения выборочных средних от генеральной средней, мин
Выборки | Выборочные средние | Генеральные средине | Ошибка выборки |
1. Иван+Павел | |||
2. Иван+Петр | |||
3. Павел+Павел | |||
4. Александр+ Иосиф | |||
5. Иван+Иван |
Уже на этой стадии мы можем сделать некоторые важные выводы. Во-первых, мы видим, что в одной и той же генеральной совокупности можно произвести много выборок, результаты которых иногда значительно отличаются друг от друга. У нас в одной выборке средняя составила 80 мин, а в другой— 10 мин. Во-вторых, поскольку никаких специальных действий для получения определенной выборки не предпринимается и каждая выборка (пара индивидов) имеет равный шанс, можно надеяться, что выборочная средняя является случайной величиной.
То обстоятельство, что случайные выборки дают столь различающиеся результаты, подозрительно, и есть основания заняться установлением всех возможных выборочных средних и, соответственно ошибок выборки. Для этого надо выписать все сочетания единиц исследования по две в генеральной совокупности из пяти единиц (вместо имен опрошенных удобнее оперировать номерами). Напомним, что отбор единиц — возвратный, т. е. каждая из них возвращается обратно в генеральную совокупность и может попасть в выборку еще и еще раз, разумеется, с такими же шансами, что и остальные единицы. Всего таких сочетаний может быть пт, где п — объем генеральной совокупности, т — объем выборки (табл. 5.10).
Таблица 5.10
Дата добавления: 2016-07-27; просмотров: 1565;