Критерии оценки радиационного воздействия


Радиоактивность - радиоактивный распад, деление ядер атомов, любые радиоактивные (или ядерные) превращения - это способность ядер атомов различных химических элементов разрушаться, видоизменяться с испусканием атомных и субатомных частиц высоких энергий. Общее количество известных естественных радионуклидов достигает 300. Но количество имеющих практическое значение, играющих заметную роль в природе, среди них невелико - не более десятка. Искусственных же радиоактивных изотопов гораздо больше, их получены тысячи. У многих химических элементов их количество значительно более 10. Кроме этого, получены новые, не известные ранее и отсутствующие в природе радиоактивные элементы, у которых стабильных изотопов нет вообще. Особенно огромное количество новых, не имевшихся в природе радиоактивных изотопов и элементов, появилось после создания атомных реакторов и испытаний ядерных бомб. К настоящему времени известно около 2000 искусственных радионуклидов.

Для естественных (природных) радионуклидов основными видами радиоактивного распада являются альфа- и бета-минус-распад (хотя встречаются и другие). Названия альфа и бета были даны Эрнестом Резерфордом в 1900 году при изучении радиоактивных излучений.

Для искусственных (техногенных) радионуклидов кроме этого характерны также нейтронный, протонный, позитронный (бета-плюс) и более редкие виды распада и ядерных превращений (мезонный, К-захват, изомерный переход, "откалывание" и др.).

Бета-распад (бета-распад) - наиболее распространённый вид радиоактивного распада (и вообще радиоактивных превращений), особенно среди искусственных радионуклидов. Так, например, при бета-минус распаде радиоактивный изотоп калия - калий-40 - превращается в стабильный изотоп кальция (стоящего в соседней клеточке справа) - кальций-40. А радиоактивный кальций-47 - в стоящий справа от него скандий-47 (тоже радиоактивный), который, в свою очередь, также путём бета-минус распада превращается в стабильный титан-47.

 

Название бета-частица сохранилось исторически. Отличие бета-минус частицы от обычного электрона только в "месте рождения": ядро атома, а не электронные оболочки вокруг ядра, а также и в скорости (энергии) вылета. Скорость вылета бета-частицы - 9/10 скорости света, т. е. 270 тыс. км/сек.

Все виды самопроизвольного радиоактивного распада характеризуются временем жизни радионуклида и его активностью, то есть скоростью распада. Период полураспада (T1/2)- время, в течение которого половина радиоактивных атомов распадается и их количество уменьшается в 2 раза. Периоды полураспада у всех радионуклидов разные - от долей секунды (короткоживущие радионуклиды) до миллиардов лет (долгоживущие).

Активность - это количество актов распада (в общем случае актов радиоактивных, ядерных превращений) в единицу времени (как правило, в секунду). Единицами измерения активности являются беккерель и кюри.

Беккерель (Бк) - это один акт распада в секунду (1 расп/сек). Единица названа в честь французского физика, лауреата Нобелевской премии Антуана Анри Беккереля.

Кюри (Ки) - 3,7·1010 Бк (расп/сек). Эта единица возникла исторически: такой активностью обладает 1 грамм радия-226 в равновесии с дочерними продуктами распада. Именно с радием-226 долгие годы работали лауреаты Нобелевской премии французские учёные супруги Пьер Кюри и Мария Склодовская-Кюри.

Кратными единицами для беккереля являются тысяча (кило-беккерель, кБк), миллион (мегабеккерель, МБк) и миллиард (гигабеккерель, ГБк).

Дольными единицами для кюри являются тысячная доля кюри - милликюри (мКи), и миллионная доля - микрокюри (мкКи, мКи):

1 мКи = 3,7 х 107 Бк; 1мкКи = 3,7 х 104 Бк.

Радиоактивная постоянная (постоянная или константа распада) l - это доля атомов, распадающихся в 1 секунду.

l = 0,693/Т1/2 (сек-1), где

0,693 - это ln 2 из закона радиоактивного распада Nt = N0 х e-lt, где

N0 и Nt - число радиоактивных атомов в начальный (нулевой) момент времени и число атомов, оставшихся к моменту t;

t - время в секундах.

Доза эквивалентная (HT,R) - поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, WR:

где DT,R - средняя поглощенная доза в органе или ткани Т, а WR - взвешивающий коэффициент для излучения R. Единицей эквивалентной дозы является зиверт (Зв).

В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц :

X = dQ/dm

Рентген (Р) - внесистемная единица экспозиционной дозы. Это такое количество гамма- или рентгеновского излучения, которое в 1 см3 сухого воздуха (имеющего при нормальных условиях вес 0,001293 г) образует 2,082 х 109 пар ионов.

Поглощение энергии ионизирующего излучения является первичным процессом, дающим начало последовательности физико-химических преобразований в облученной ткани, приводящей к наблюдаемому радиационному эффекту. Поэтому естественно сопоставить наблюдаемый эффект с количеством поглощенной энергии или поглощенной дозы. Поглощенная доза (D) - основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме :

D = dE/dm

Единица поглощенной дозы - Грей (Гр). Внесистемная единица Рад определялась как поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1 грамм облученного вещества.

 



Дата добавления: 2016-07-22; просмотров: 2725;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.