Механические свойства материалов


Основными механическими свойствами материалов являются прочность, пластичность, упругость, твердость.

Прочностью называется свойство материала выдерживать нагрузки не разрушаясь.

Пластичность — это свойство материала давать остаточную деформацию.

Упругость — это способность материала восстанавливать свои первона­чальные размеры и форму после прекращения действия нагрузок.

Твердостью называется свойство материала оказывать сопротивление проникновению в него другого, более твердого тела.

Для определения значений параметров, характеризующих свойства материалов, проводят механические испытания. Испытания на статическое растяжение являются основным видом механических испытаний материалов, позволяющим определить их прочностные и пластические характеристики Данные, получаемые при этих испытаниях, широко используются при расчетах конструкций современных машин и устройств, а также в технологи­ческих расчетах, связанных с назначением режимов обработки конс1-рукционных материалов.

Для испытаний на растяжение используют цилиндрические или плоские образцы определенной формы (рис. 3.5, а). На специальной лабораторной машине образцы подвергают постепенному растяжению, автоматически реги­стрируя нагрузку F, абсолютное удлинение Dlи записывая диаграмму (график) в координатах F Dl(рис. 3.5 б). Для определения численных значений механических характеристик материала испытуемого образца используют условную диаграмму «напряжение — деформация», построенную в относи­тельных координатах: s= F/S и e = Dl/l, где S и l начальные площадь поперечного сечения образца и его длина.

Рис 3.5

Для большинства металлических материалов характерны следующие цветки диаграммы растяжения (рис. 3.5. б):

- на участке ОА удлинение Dlпропорционально растягивающей нагрузке F т. е. выполняется закон Гука. Если эту нагрузку снять, то удлинение Dl полностью исчезнет. Напряжение snсоответствующее крайней точке А участка диаграммы, называется пределом пропорциональности;

- на участке АВ диаграмма растяжения становится криволинейной. Однако точки В деформации остаются упругими. Напряжение sу, соответствующее точке В, называется пределом упругости:

- на участке ВС наблюдается пластическая деформация и, начиная с точки С, материал образца начинает «течь», т. е. удлинение Dlрастет без увеличения нагрузки F. Напряжение sr, соответствующее точке С диаграммы, характеризует пластические свойства материала и называется пределом текучести. Пологий участок СD диаграммы растяжения еще называют «площадкой текучести». Некоторые металлы (бронза, специальные стали и др.) не имеют явно выраженной зоны текучести. Для таких материалов за sг принимают напряжение при остаточном относительном удлинении, равном 0,2 %, e = (Dl /l)*100% = 0,2%.

В результате пластической деформации происходит перестройка кристаллической решетки материала образца, что приводит к его упрочнению. Явление упрочнения материала при пластическом деформировании называется наклепом. Оно широко используется в качестве технологического способа упрочнения различных деталей;

- на участке ОЕ происходит упругая деформация упрочненного материала по закону, отличающемуся от закона Гука. Наибольшее напряжение в материале образца, соответствующее точке Е диаграммы, называется пределом прочности, или временным сопротивлением. При достижении этого напряжения в образце возникает суженная зона (шейка), поэтому дальнейшая деформация протекает при уменьшающейся нагрузке Е. Учитывая, что в зоне сужения происходит уменьшение площади поперечного сечения образца, истинная диаграмма напряжений, в которой отражена зависимость между деформацией e и действительным напряжением в образце s =F/S (где S — площадь сечения образца в зоне шейки), показана на рис. 3.5 bштриховой лини­ей EК.

Используя диаграмму растяжения, можно определить значение модуль» упругости первого рода Е материала образца. Для этого возьмем на участке ОА диаграммы, где выполняется закон Гука, точку M. Относительную деформацию и напряжение для этой точки обозначим соответственно eми sм. Так как sм = Еeм Это уравнение прямой в системе координат s - e : здесь Е — угловой коэффициент, численно равный тангенсу угла наклона линейного участка диаграммы растяжения к оси относительной деформации e. Следовательно. Е = tga, что является выражением геометрического смысла модуля упругости первого рода при деформации растяжения (сжатия).

Твердость материала тесно связана с такими основными характеристиками металлов и сплавов, как прочность, износоустойчивость и является важной характеристикой металла. Часто по измеренной твёрдости металла судят о его способности сопротивляться износу, например, чем тверже сталь, тем меньше она изнашивается, и наоборот.

Имеется несколько методов определения твердости материалов, которые основаны на анализе результатов внедрения индентора определенной формы в поверхность образца из исследуемого материала. Наиболее распространенными методами измерения твердости являются:

- метод Бринелля;

- метод Виккерса;

- метод Роквелла.

Метод Бринелля заключается в том, что шарик из закаленной стали под действием нагрузки Е вдавливается в зачищенную поверхность образца. Число единиц твердости по Бринеллю (НВ) рассчитывается как частное от деления нагрузки, при которой происходит вдавливание, на площадь поверхности опечатка в образце, измеренную после снятия нагрузки. Поверхность образца подготавливается к испытанию (на станке или напильником) в виде плос­кости с чистотой обработки, обеспечивающей хорошую видимость краев от­печатка в микроскопе.

Твердость по методу Виккерса измеряется при помощи четырехгранной пирамиды стандартных размеров, вдавливаемой в испытуемый образец под действием нагрузки F в течение определенного времени.

Число твердости определяется как частное от деления стандартной на­грузки F на площадь S боковой поверхности пирамидального отпечатка, диагональ основания которого измеряется после удаления нагрузки, а углы при вершине отпечатка условно принимаются равными углам при вершине пира­мидального наконечника (индентора).

Числа твердости по Виккерсу (НV) и по Бринеллю (НВ) имеют одинаковую размерность и для материалов твердостью до 450 НВ практически совпадают.

Измерение твердости по методу Роквелла производится вдавливанием стандартного алмазного конуса или стального стандартного шарика в образец под действием двух нагрузок: предварительной Fo общей, равной сумме нагрузок: предварительной Fо и основной F..

Число твердости по Роквеллу является условной величиной и определяемся разностью глубин, на которые перемещается наконечник под действием последовательно приложенных предварительной и общей нагрузок.

В зависимости от исследуемого материала твердость может определяться по одной из трех шкал: А, В или С. При измерении твердости по шкалам А и С в качестве наконечника применяется тщательно отполированный алмаз­ный конус.

При измерении твердости по шкале В в качестве индентора применяется термически обработанный стальной шарик диаметром 1,588 мм, имеющий твердость 850 НV.

В зависимости от того, применяют шарик или алмазный конус, и в зависимости от величины нагрузки, при которой проводят испытание, число твердости определяют по шкале А, В или С. От обозначения выбранной шкалы зависит и обозначение твердости: НRА, НR.В или HRС.

 




Дата добавления: 2020-10-14; просмотров: 393;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.