Виды научных законов
При классификации теоретических научных знаний вообще и, в том числе, при классификации научных законов принято выделять их отдельные виды. При этом в качестве оснований классификации могут использоваться достаточно разные признаки. В частности, одним из способов классификации знания в рамках естественных наук является его подразделение в соответствии с основными видами движения материи, когда выделят т.н. «физическую», «химическую» и «биологическую» формы движения последней. Что касается классификации видов научных законов, то последние также можно делить разными способами.
Одним из видов классификации является подразделение научных законов на:
1. «Эмпирические»;
2. «Фундаментальные».
В силу того, что на примере этой классификации можно наглядно увидеть, как происходит процесс перехода знания, которое изначально существующего в виде гипотез, к законам и теориям рассмотрим этот тип классификации научных законов подробнее.
Основанием для деления законов на эмпирические и фундаментальные является уровень абстрактности используемых в них понятий и степень общности области определения, которая соответствует этим законам.
Эмпирические законы – это такие законы, в которых на основе наблюдений, экспериментов и измерений, которые всегда связаны с какой-либо ограниченной областью реальности, устанавливается какая-либо определенная функциональная связь. В разных областях научного знания существует огромное количество законов подобного рода, которые более или менее точно описывают соответствующие связи и отношения. В качестве примеров эмпирических законов можно указать на три закона движения планет И. Кеплера, на уравнение упругости Р. Гука, согласно которому при небольших деформациях тел возникают силы, примерно пропорциональные величине деформации, на частный закон наследственности, согласно которому сибирские коты с голубыми глазами, как правило, от природы глухие.
Фундаментальные законы – это законы, которые описывают функциональные зависимости, действующие в рамках всего объема соответствующей им сферы реальности. Фундаментальных законов сравнительно немного. В частности, классическая механика включает в себя только три таких закона. Сфера реальности, которая им соответствует – это мега- и макромир.
В качестве наглядного примера специфики эмпирических и фундаментальных законов можно рассмотреть отношением между законами Кеплера и законом всемирного тяготения. Иоганн Кеплер в результате анализа материалов наблюдения за движением планет, которые собрал Тихо Браге, установил следующие зависимости:
- планеты двигаются по эллиптическим орбитам вокруг Солнца (первый закон Кеплера);
- планеты двигаются неравномерно: чем дальше планета находится от Солнца, тем она двигается медленнее, и наоборот: чем она ближе к Солнцу, тем двигается быстрее (второй закон Кеплера);
- периоды обращения планет вокруг Солнца зависят от их удаленности от него: более удаленные планеты двигаются медленнее, чем те, которые расположены ближе к Солнцу (третий закон Кеплера).
После констатации этих зависимостей, вполне естественен вопрос: почему так происходит? Существует ли какая-либо причина, которая заставляет планеты двигаться именно так, а не иначе? Будут ли справедливы найденные зависимости и для других небесных систем, или это относится только к Солнечной системе? Более того, даже если бы вдруг оказалось, что есть система подобная Солнечной, где движение подчиняется тем же принципам, все равно неясно: случайность ли это или за всем этим стоит что-то общее? Может быть, чье-то скрытое стремление сделать мир красивым и гармоничным? К такому выводу, например, может подталкивать анализ третьего закона Кеплера, который действительно выражает определенную гармонию, так как здесь период обращения планы вокруг Солнца зависит от величины ее орбиты.
Следует заметить, что законы Кеплера только описывают наблюдаемое движение планет, но не указывают на причину, которая приводит к такому движению. В отличие о них закон гравитации Ньютона указывает причину и особенности движение космических тел по законам Кеплера. И. Ньютон нашел правильное выражение для гравитационной силы, возникающей при взаимодействии тел, сформулировав закон всемирного тяготения: между любыми двумя телами возникает сила притяжения, пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Из этого закона в качестве следствий можно вывести причины того, почему планеты двигаются неравномерно и почему более далеко отстоящие от Солнца планеты движутся медленнее, чем те, которые расположены ближе к нему.
Конкретно-эмпирический характер законов Кеплера проявляется также и в том, что эти законы выполняются точно только в случае движения одного тела вблизи другого, которое обладает значительно большей массой. Если же массы тел соизмеримы, будет наблюдаться их устойчивое совместное движение вокруг общего центра масс. В случае движения планет вокруг Солнца указанный эффект малозаметен, однако в космосе существуют системы, которые совершают такое движение – это т.н. «двойные звезды».
Фундаментальный характер закона всемирного тяготения проявляется и в том, что на его основе можно объяснить не только достаточно разные траектории движения космических тел, но он также играет большую роль при объяснении механизмов образования и эволюции звезд и планетных систем, а также моделей эволюции Вселенной. Кроме этого, это закон объясняет причины особенностей свободного падения тел у поверхности Земли.
На примере сравнения законов Кеплера и закона всемирного тяготения достаточно хорошо видны особенности эмпирических и фундаментальных законов, а также их роль и место в процессе познания. Сущность эмпирических законов состоит в том, что в них всегда описываются отношения и зависимости, которые были установлены в результате исследования какой-либо ограниченной сферы реальности. Именно поэтому таких законов может быть сколь угодно много.
Последнее обстоятельство может быть серьезным препятствием в деле познания. В том случае, когда процесс познания не выходит за пределы формулировки эмпирических зависимостей, значительных усилия будут затрачиваться на множество однообразных эмпирических исследований, в результате которых будут открываться все новые и новые отношения и зависимости, однако, их познавательная ценность будет существенно ограничена. Возможно, лишь рамками отдельных случаев. Другими словами, эвристическая ценность таких исследований фактически не будет выходить за границы формулировки ассерторических суждений вида «Действительно, что…». Уровень познания, который может быть достигнут подобным путем, не будет выходить за рамки констатации того, что найдена очередная уникальная или справедливая для очень ограниченного числа случаев зависимость, которая почему-то именно такая, а не иная.
В случае же формулировки фундаментальных законов ситуация будет совершенно другой. Сущностью фундаментальных законов является то, что они устанавливают зависимости, которые справедливы для любых объектов и процессов, относящихся к соответствующей области реальности. Поэтому, зная фундаментальные законы, аналитическим путем из них можно выводить множество конкретных зависимостей, которые будут справедливы для тех или иных конкретных случаев или каких-либо определенных видов объектов. Исходя из этой особенности фундаментальных законов, суждения, формулируемые в них, можно представить в форме аподиктических суждений «Необходимо, что…», а отношение между этим видом законов и выводимыми из них частными закономерностями (эмпирическими законами) по своему смыслу будут соответствовать отношениям между аподиктическими и ассерторическими суждениями. В возможности выведения из фундаментальных законов эмпирических в виде их частных следствий и проявляется основная эвристическая (познавательная) ценность фундаментальных законов. Наглядным примером эвристической функции фундаментальных законов является, в частности, гипотеза Леверье и Адамаса по поводу причин отклонения Урана от расчетной траектории.
Эвристическая ценность фундаментальных законов проявляется также и в том, что на основании знания их можно проводить селекцию разнообразных предположений и гипотез. Например, с конца XVIII в. в научном мире не принято рассматривать заявки на изобретения вечного двигателя, так как принцип его действия (КПД больше 100%) противоречит законам сохранения, которые являются фундаментальными основоположениями современного естествознания.
Необходимо отметить, что содержание любого научного закона может быть выражено посредством общеутвердительного суждения вида «Все S есть P», однако не все истинные общеутвердительные суждения являются законами. Например, еще в XVIII веке была предложена формула для радиусов орбит планет (т.н. правило Тициуса – Боде), которая может быть выражена следующим образом: Rn = (0, 4 + 0, 3 × 2n) × Ro, где Ro – радиус орбиты Земли, n – номера планет Солнечной системы по порядку. Если в данную формулу последовательно подставлять аргументы n = 0, 1, 2, 3, …, то в результате будут получаться значения (радиусы) орбит всех известных планет Солнечной системы (исключение составляет лишь значение n = 3, для которого на рассчитанной орбите нет планеты, однако вместо нее есть пояс астероидов). Таким образом, можно сказать, что правило Тициуса – Боде достаточно точно описывает координаты орбит планет Солнечной системы. Однако является ли оно хотя бы эмпирическим законом, например, подобным законам Кеплера? Видимо, нет, так как в отличие от законов Кеплера, правило Тициуса – Боде никак не следует из закона всемирного тяготения и оно до сих пор не получило никакого теоретического объяснения. Отсутствие компонента необходимости, т.е. того, что объясняет почему дело обстоит так, а не иначе, не позволяет считать научным законом как данное правило, так и аналогичные ему высказывания, которые можно представить в виде «Все S есть P».
Далеко не во всех науках достигнут тот уровень теоретического знания, который позволяет из фундаментальных законов аналитически выводить эвристически значимые следствия для частных и уникальных случаев. Из естественных наук, фактически, только физика и химия достигли этого уровня. Что касается биологии, то хотя в отношении этой науки тоже можно говорить об определенных закономерностях фундаментального характера – например, о законах наследственности – однако в целом в рамках этой науки эвристическая функция фундаментальных законов гораздо более скромная.
Кроме деления на «эмпирические» и «фундаментальны», научные законы можно также разделить на:
1. Динамические;
2. Статистические.
Основанием для классификации последнего типа является характер предсказаний, вытекающий из этих законов.
Особенностью динамических законов является то, что предсказания, которые вытекают из них, носят точный и однозначно определенный характер. Примером законов такого вида являются три закона классической механики. Первый из этих законов утверждает, что всякое тело в отсутствии действия на него сил или при взаимном уравновешивании последних находится в состоянии покоя или равномерного прямолинейного движения. Второй закон говорит о том, что ускорение тела пропорционально приложенной силе. Из этого следует, что скорость изменения скорости или ускорение зависит от величины прилагаемой к телу силы и его массы. Согласно третьему закону, при взаимодействии двух объектов они оба испытывают действия сил, причем эти силы равны по величине и противоположны по направлению. На основании этих законов можно сделать вывод, что все взаимодействия физических тел – это цепь однозначно предопределенных причинно-следственных связей, которую эти законы и описывают. В частности, в соответствии с этими законами, зная начальные условия (масса тела, величина прилагаемой к нему силы и величина сил сопротивления, угол наклона по отношению к поверхности Земли) можно произвести точный расчет будущей траектории движения какого-либо тела, например, пули, снаряда или ракеты.
Статистические законы – это такие законы, которые предсказывают развитие событий лишь с определенной долей вероятности. В таких законах исследуемое свойство или признак относится не к каждому объекту изучаемой области, а ко всему классу или популяции. Например, когда говорят, что в партии из 1000 изделий 80 % отвечает требованиям стандартов, то это означает, что примерно 800 изделий являются качественными, но какие именно это изделия (по номерам) не уточняется.
Динамические закономерности привлекательны тем, что на их основе предполагается возможность абсолютно точного или однозначного предсказания. Мир, описанный на основе динамических закономерностей, – это абсолютно детерминированный мир. Практически динамический подход может быть использован для вычисления траектории движения объектов макромира, например, траекторий движения планет.
Однако динамический подход не может использоваться для расчета состояния систем, которые включают в себя большое количество элементов. Например, в 1 кг водорода содержится молекул, то есть настолько много, что только одна проблема записи результатов расчета координат всех этих молекул оказывается заведомо невыполнима. В силу этого при создании молекулярно-кинетической теории, то есть теории описывающей состояние макроскопических порций вещества был избран не динамический, а статистический подход. Согласно этой теории, состояние вещества может быть определено с помощью таких усредненных термодинамических характеристик, как «давление» и «температура».
В рамках молекулярно-кинетической теории не рассматривается состояние каждой отдельной молекулы вещества, а учитываются средние, наиболее вероятные состояния групп молекул. Давление, например, возникает из-за того, что молекулы вещества обладают определенным импульсом. Но что бы определить давление, нет необходимости (да это и невозможно) знать импульс каждой отдельной молекулы. Для этого достаточно знания значений температуры, массы и объема вещества. Температура как мера средней кинетической энергии множества молекул это тоже усредненный, статистический показатель. Примером статистических законов физики являются законы Бойля-Мариотта, Гей-Люссака и Шарля, которые устанавливают зависимость между давлением, объемом и температурой газов; в биологии – это законы Менделя, которые описывают принципы передачи наследуемых признаков от родительских организмов к их потомкам.
Статистический подход – это вероятностный метод описания сложных систем. Поведение отдельной частицы или другого объекта при статистическом описании считается несущественным. Поэтому изучение свойств системы в данном случае сводится к отысканию средних значений величин, характеризующих состояние системы как целого. В силу того, что статистический закон – это знание о средних, наиболее вероятных значениях, она способна описать и предсказать состояние и развитие какой-либо системы только с определенной вероятностью.
Главная функция любого научного закона состоит в том, чтобы по заданному состоянию рассматриваемой системы предсказать ее будущее или восстановить прошлое состояние. Поэтому естественен вопрос, какие законы, динамические или статистические описывают мир на более глубоком уровне? До XX века считалось, что более фундаментальны динамические закономерности. Так было потому, что ученые полагали, что природа строго детерминирована и поэтому любая система в принципе может быть рассчитана с абсолютной точностью. Считалось также, что статистический метод, дающий приближенные результаты, может использоваться тогда, когда точностью расчетов можно пренебречь. Однако в связи с созданием квантовой механики ситуация изменилась.
Согласно квантовомеханическим представлениям микромир может быть описан лишь вероятностно в силу действия «принципа неопределенности». Согласно этому принципу, невозможно одновременно точно определить местоположение частицы и ее импульс. Чем точнее определяется координата частицы, тем более неопределенным становится импульс и наоборот. Из этого, в частности, следует, что динамические законы классической механики не могут быть использованы для описания микромира. Однако недетерминированность микромира в лапласовом смысле вовсе не означает, что в отношении него вообще невозможно предсказание событий, а только то, что закономерности микромира не динамические, а статистические. Статистический подход используется не только в физике и биологии, но также в технических и социальных науках (классический пример последнего – социологические опросы).
Дата добавления: 2020-10-14; просмотров: 513;