Тема 4. Биполярные транзисторы
Биполярный транзистор – полупроводниковый прибор, образованный двумя последовательно включенными взаимодействующими p-n-переходами и содержащий три или более вывода, усилительные свойства которого обусловлены явлениями инжекции и экстракции носителей заряда. Процессы усиления в БТ объясняются возможностью управления большим током в выходной цепи ( коллектор или эмиттер) при небольших изменениях напряжения или тока во входной цепи ( эмиттер- база).
В зависимости от порядка чередования областей полупроводника, различают транзисторы а) р-n-р-типа и б) n-р-n-типа ( рис.4.1.)
а) б)
Рис.4.1.
Отличие между ними заключается в различной полярности источников внешних напряжений и в направлении протекания токов через электроды при одинаковом принципе работы. Эмиттером называется одна из крайних областей, которую легируют сильнее, что позволяет использовать ее в режиме инжекции. Промежуточную область называют базой а другую крайнюю область – коллектором. В область коллектора производится экстракция носителей заряда из базовой области. Электронно-дырочный переход между эмиттерной и базовой областями называют эмиттерным, а между коллекторной и базовой – коллекторным.
В зависимости от напряжения на переходах возможны следующие режимы работы транзистора:
активный режим –на эмиттерный переход подается прямое смещение , на коллекторный обратное (запирающее);
режим отсечки – на обоих переходах обратное напряжение;
режим насыщения – на обоих переходах прямое напряжение;
инверсный режим – обратный по отношение к активному, то есть коллекторный переход смещен в прямом направлении, эмиттерный – в обратном.
В зависимости от того, какой из выводов транзистора является общим для входной и выходной цепи, различают три схемы включения транзистора: с общей базой (ОБ), с общим эмиттером (ОЭ) и с общим коллектором (ОК). На рис. 4.2. показаны полярности внешних источников напряжения и направления токов транзистора, соответствующие активному режиму работы, для трех схем включения.
а б в
Рис. 4.2. Схемы включения биполярного транзистора ( ОБ,ОЭ,ОК)
Основные функции биполярного транзистора могут быть реализованы только в активном режиме, поэтому ниже рассмотрим процессы формирования токов и управления ими в активном режиме для схемы с общей базой .
С ростом прямого смещения Uэб на эмиттерном переходе происходит уменьшение его потенциального барьера, что вызывает инжекцию дырок из эмиттера в базу и электронов из базы в эмиттер.
Рис.4.3. Внутренняя структура биполярного транзистора
При этом, как и ранее в полупроводниковых диодах, используется несимметричный р-п переход, при котором концентрация примеси в эмиттере много больше концентрации примеси в базе (концентрация основных носителей эмиттера много больше концентрации основных носителей базы). Это приводит к тому что инжекция дырок из эмиттера в базу преобладает над инжекцией электронов из базы в эмиттер. Ток инжекции имеет две составляющие: дырочную Iэp и электронную Iэn. Процесс инжекции характеризуется коэффициентом инжекции (эффективностью эмиттерного перехода) , показывающим, какую долю составляет от общего тока эмиттера ток инжектированных в базу носителей.
В результате инжекции происходит диффузия дырок через базу к коллекторному переходу. Этот процесс усиливается тем, что дырки, подошедшие к обратносмещенному коллекторному переходу, попадают в его ускоряющее поле Uкб и экстрагируют в коллектор, создавая управляемую составляющую тока коллектора Iк упр..
По мере продвижения по базе незначительная часть дырок рекомбинирует с собственными носителями базы – электронами, создавая рекомбинационную составляющую тока базы Iб рек. Коэффициент переноса неосновных носителей через базу характеризуется e = Iкp/Iэp, где Iкp – ток дырок, дошедших до коллекторного перехода в области базы.
При экстракции может также происходить ударная ионизация атомов полупроводника и лавинное умножение носителей заряда в коллекторном переходе, которое оценивается коэффициентом лавинного умножения М = Iк упр/Iкp. Произведение частичных коэффициентов передачи позволяет определить сквозной коэффициент передачи по току в схеме с ОБ (статический коэффициент передачи тока эмиттера) как Управляемая составляющая тока коллектора при этом равна .
Значения параметра лежат в диапазоне 0,95¼0,999.
Можно заметить, что в общем случае при малой ширине базы поле КП полностью формирует ток коллектора, то есть напряжение на коллекторном переходе при этом может отсутствовать. Однако в реальной схеме включения БТ напряжение Uкэ всегда имеется, что обусловлено включением нагрузки и необходимостью создания выходного тока в цепи коллектора.
Следовательно, кроме управляемого тока коллектора через коллекторный переход всегда протекает обратный неуправляемый ток , обусловленный экстракцией собственных неосновных носителей базы (дырок) и коллектора (электронов). Поэтому для полного тока коллектора справедливо выражение
(4.1)
Обратный неуправляемый ток сильно зависит от температуры, поэтому называют также тепловым током. совпадает по направлению с управляемым током коллектора , а в цепи базы противоположен току рекомбинации, поэтому полный ток базы определяется разностью .
Величина для германиевых транзисторов составляет десятки микроампер, а для кремниевых транзисторов – сотни наноампер, Поэтому можно считать, что .
Для БТ можно записать так называемое внутреннее уравнение транзистора, то есть выражение, связывающее токи всех трех выводов БТ:
, (4.2)
Выражение, связывающее выходной и входной ток транзистора, включенного по схеме с ОЭ, можно получить, подставив (4.2) в (4.1):
. (4.3)
Параметр называют статическим коэффициентом передачи по току в схеме с ОЭ (статический коэффициент передачи тока базы). Ток называют начальным током транзистора.
Коэффициент принимает значения, лежащие в диапазоне десятки – сотни раз. Очевидно, что величина характеризует способность транзистора усиливать малый по величине ток базы и это усиление будет тем больше, чем больше . Величина также будет расти при уменьшении потерь в базе и ширины базы, что позволит также повысить крутизну управления БТ при подаче небольшого сигнала во входную цепь БТ ( эмиттер-база).
В активном режиме работы токи коллектора и эмиттера БТ практически равны, а незначительный ток базы равен их разности.
Это приводит к тому, что в схеме с ОБ отсутствует усиление по току ( )., а в схеме с ОЭ величина имеет большое значение ( 50-100).
Усиление входного сигнала по напряжению и мощности возможно получить в обеих рассмотренных схемах включения ( ОБ и ОЭ). Поскольку ток коллектора формируется без участия Uк, величина коллекторного тока практически не зависит от напряжения на коллекторном переходе, поэтому дифференциальное сопротивление коллекторного перехода очень велико (переход включен в обратном направлении).
В связи с этим в цепь коллектора можно включать нагрузку с большим сопротивлением , что практически не изменит коллекторный ток. В то же время дифференциальное сопротивление прямовключенного эмиттерного перехода очень мало: и .
Можно увидеть, что изменение входного (эмиттерного) тока на величину практически приводит к такому же изменению коллекторного тока . При этом изменение потребляемой мощности в цепи эмиттера значительно меньше изменения мощности в выходной цепи . Это означает, что транзистор способен управлять большой мощностью в коллекторной цепи при небольших затратах мощности в эмиттерной цепи. Коэффициент усиления по мощности определяется выражением
(4.4)
Аналогичные выводы можно получить и для схемы с ОЭ, которая является универсальной ( то есть усиливает и по току и по напряжению и по мощности). Для схемы включения с ОК можно определить соотношение выходного тока эмиттера и входного тока базы как
Кi =Iэ/Iб=(Iк+ Iб)/Iб= (1+ ). (4.5)
Из схемы рис. , эквивалентная схема которой соответствует схеме с ОК, можно увидеть, что выходное напряжении всегда меньше входного, то есть схема включения БТ с ОК не позволяет получить усиление по напряжению, но , очевидно, позволяет получить усиление по мощности, так как Кi= (1+ ).
Статические ВАХ отражают зависимости между постоянными входными и выходными токами и напряжениями транзистора. Для любой схемы включения транзистора можно получить четыре семейства статических ВАХ: входные , выходные , прямой передачи по току и обратной связи по напряжению . В таком варианте ВАХ мы анализируем зависимость параметров транзистора от входного тока , так как параметры биполярного транзистора в рабочем режиме зависят от величины тока через прямосмещенный переход БТ. В то же время в выходной цепи определяющей является зависимость параметров от напряжения на обратносмещенном переходе, то есть .
На рис. 4.3. и рис 4.4.. приведены графики семейств статических ВАХ транзистора, имеющего p-n-p-структуру, для включения с ОБ.
Рис 4.4. Входные и выходные статические ВАХ p-n-p-транзистора с ОБ.
Входные характеристики представляют собой известные характеристики прямосмещенного р-п перехода. Выходные характеристики позволяют оценить поведение транзистора в различных режимах работы в соответствии с определением режимов.
Рис.4.5. Характеристики прямой передачи и обратной связи БТ с ОБ
Характеристики прямой передачи БТ являются линейными в рабочей области входных токов в соответствии с уравнением .
Поведение характеристик обратной связи объясняется эффектом модуляции ширины базы в области небольших значений U кб.
Для схемы включения БТ с ОЭ поведение входных характеристик ( рис. 4.6.) объясняется так же как и для схемы с ОБ. На выходных характеристиках требует пояснения отличное от схемы с ОБ расположение области режима насыщения
Рис.4.6. Входные и выходные характеристики БТ с ОЭ
В частности в схеме с ОЭ насыщение БТ наступает при выполнении условия Uкэ < Uбэ. В этом случае полярность напряжения на коллекторном переходе соответствует прямому смещению независимо от типа транзистора (р-п-р или п-р-п.). На рис. также показана возможность определения параметров транзистора через приращения токов и напряжений в заданной рабочей точке БТ.
Рис.4.7. Характеристики прямой передачи и обратной связи БТ с ОЭ
Дата добавления: 2020-10-14; просмотров: 364;