Тема 4.3 Кванторные операции над предикатами.


Специфическая природа предикатов, позволяет ввести над ними такие операции, которые не имеют аналогов среди операций над высказываниями. Имеются в виду две кванторные операции над предикатами.

1. Квантор общности

Для превращения одноместного предиката в высказывание нужно вместо его переменной подставить какой-нибудь конкретный предмет из области задания предиката. Имеется еще один способ для такого превращения – это применение к предикату операций связывания квантором общности или квантором существования. Каждая из этих операций ставит в соответствие одноместному предикату некоторое высказывание, истинное или ложное в зависимости от исходного предиката.

Операцией связывания квантором общности называется правило, по которому каждому одноместному предикату Р(х), определенному на множестве М, сопоставляется высказывание, обозначаемое , которое истинно в том и только в том случае, когда предикат Р(х) тождественно истинен, и ложно в противном случае, то есть

Словесным аналогом квантору общности " является: «для любого», «для каждого», «для всякого» и т.п.

В выражении переменная х уже перестает быть переменной в обычном смысле этого слова, то есть вместо нее невозможно подставить какие бы то ни было конкретные значения. Говорят, что переменная х связанная.

Если одноместный предикат Р(х) задан на конечном множестве М = {a1, a2, …, an}, то высказывание эквивалентно конъюнкции Р(а1)Ù Р(а2)Ù … Ù Р(аn).

Пример. Пусть х определен на множестве людей М, а Р(х) – предикат «х – смертен». Дать словесную формулировку предикатной формулы .

Решение. Выражение означает «все люди смертны». Оно не зависит от переменной х, а характеризует всех людей в целом, т. е. выражает суждение относительно всех х множества М.

Операцией связывания квантором общности по переменной х1 называется правило, по которому каждому n-местному (n ³ 2) предикату Р(х1, х2, …, хn), определенному на множествах М1, М2, …, Мn, сопоставляется новый (n-1)-местный предикат, обозначаемый , который для любых предметов , превращается в высказывание , истинное в том и только в том случае, когда одноместный предикат , определенный на множестве М1, тождественно истинен, и ложное в противном случае, то есть:



Дата добавления: 2016-07-22; просмотров: 2205;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.