Примеры решения задач


 

Пример 1. Из расчетов на прочность и жесткость определить потребный диаметр вала для передачи мощности 63 кВт при скорости 30 рад/с. Материал вала — сталь, допускаемое напряжение при кручении 30 МПа; допускаемый относительный угол закручивания о] = 0,02рад/м; модуль упругости при сдвиге G = 0,8 * 105 МПа.

Решение

1. Определение размеров поперечного сечения из расчета на прочность.

Условие прочности при кручении:

Определяем вращающий момент из формулы мощности при вращении:

Из условия прочности определяем момент сопротивления вала при кручении

Значения подставляем в ньютонах и мм.

Определяем диаметр вала:

2. Определение размеров поперечного сечения из расчета на жесткость.

Условие жесткости при кручении:

Из условия жесткости определяем момент инерции сечения при кручении:

Определяем диаметр вала:

3. Выбор потребного диаметра вала из расчетов на прочность и жесткость.

Для обеспечения прочности и жесткости одновременно из двух найденных значений выбираем большее.

Полученное значение следует округлить, используя ряд пред­почтительных чисел. Практически округляем полученное значение так, чтобы число заканчивалось на 5 или 0. Принимаем значение dвала = 75 мм.

Для определения диаметра вала желательно пользоваться стан­дартным рядом диаметров, приведенном в Приложении 2.

 

Пример 2. В поперечном сечении бруса d = 80 мм наибольшее касательное напряжение τтах = 40 Н/мм2. Определить касательное напряжение в точке, удаленной от центра сечения на 20 мм.

 

Решение

 

Эпюра касательных напряжений в поперечном сечении представлена на рис. 2.37, б. Очевидно,

откуда

 

 
 

Пример 3. В точках внутреннего контура поперечного сечения трубы (d0 = 60 мм; d = 80 мм) возникают касательные напряжения, равные 40 Н/мм2. Определить максимальные касательные напряжения, возникающие в трубе.

Решение

 

Эпюра касательных напряжений в поперечном сечении представлена на рис. 2.37, в. Очевидно,

Откуда

 

Пример 4. В кольцевом поперечном сечении бруса (d0 = 30 мм; d = 70 мм) возникает крутящий момент Мz = 3 кН-м. Вычислить касательное напряжение в точке, удаленной от центра сечения на 27 мм.

Решение

Касательное напряжение в произвольной точке поперечного сечения вычисляется по формуле

 

В рассматриваемом примере Мz = 3 кН-м = 3-106 Н• мм,

Подставляя числовые значения, получаем

 

Пример 5. Стальная труба (d0 = l00 мм; d = 120 мм) длиной l = 1,8 м закручивается моментами т, приложенными в ее торцевых сечениях. Определить ве­личину т, при которой угол закручивания φ = 0,25°. При найденном значении т вычислить максимальные касательные напряжения.

Решение

 

Угол закручивания (в град/м) для одного участка вычисляется по формуле

тогда

В данном случае

Подставляя числовые значения, получаем

 

Вычисляем максимальные касательные напряжения:

 

Пример 6. Для заданного бруса (рис. 2.38, а) построить эпюры крутящих моментов, максимальных каса­тельных напряжений, углов поворота поперечных сечений.

 

Решение

 

Заданный брус имеет участки I, II, III, IV, V (рис. 2. 38, а). Напомним, что границами участков являются сечения, в которых приложены внешние (скру­чивающие) моменты и места изменения размеров попереч­ного сечения.

Пользуясь соотношением

строим эпюру крутящих моментов.

Построение эпюры Мz начинаем со свободного конца бруса:

 

для участков III и IV

для участка V

Эпюра крутящих моментов представлена на рис, 2.38, б. Строим эпюру максимальных касательных напряжений по длине бруса. Условно приписываем τшах те же знаки, что и соответствующим крутящим моментам. На участке I

на участке II

на участке III

на участке IV

на участке V

Эпюра максимальных касательных напряжений пока­зана на рис. 2.38, в.

Угол поворота поперечного сечения бруса при посто­янных (в пределах каждого участка) диаметре сечения и крутящем моменте определяется по формуле

Строим эпюру углов поворота поперечных сечений. Угол поворота сечения А φл = 0, так как в этом сечении брус закреплен.

 

Эпюра углов поворота поперечных сечений изображе­на на рис. 2.38, г.

 

 

Пример 7. На шкив В ступенчатого вала (рис. 2.39, а) передается от двигателя мощность NB = 36 кВт, шкивы А и С соответственно передают на станки мощности NA = 15 кВт и NC = 21 кВт. Час­тота вращения вала п = 300 об/мин. Про­верить прочность и жесткость вала, если [τKJ = 30 Н/мм2, [Θ] = 0,3 град/м, G = 8,0-104 Н/мм2, d1 = 45 мм, d2 = 50 мм.

Решение

 

Вычислим внешние (скручивающие) моменты, приложенные к валу:

где

Строим эпюру крутящих моментов. При этом, двигаясь от левого конца вала, условно считаем момент, соответ­ствующий NА, положительным, Nc — отрицательным. Эпюра Mz показана на рис. 2.39, б. Максимальные напряжения в поперечных сечениях участка АВ

что меньше [тк] на

Относительный угол закручивания участка АВ

что значительно больше [Θ] ==0,3 град/м.

Максимальные напряжения в поперечных сечениях участка ВС

что меньше [тк] на

Относительный угол закручивания участка ВС

 

что значительно больше [Θ] = 0,3 град/м.

Следовательно, прочность вала обеспечена, а жест­кость — нет.

 

Пример 8. От электродвигателя с помощью ремня на вал 1 передается мощность N = 20 кВт, С вала 1 по­ступает на вал 2 мощность N1 = 15 кВт и к рабочим ма­шинам — мощности N2 = 2 кВт и N3 = 3 кВт. С вала 2 к рабочим машинам поступают мощности N4 = 7 кВт, N5 = 4 кВт, N6 = 4 кВт (рис. 2.40, а). Определить диаметры валов d1 и d2 из условия прочности и жесткости, если [τKJ = 25 Н/мм2, [Θ] = 0,25 град/м, G = 8,0-104 Н/мм2. Се­чения валов 1 и 2 считать по всей длине постоянными. Частота вращения вала электродвигателя п = 970 об/мин, диаметры шкивов D1 = 200 мм, D2 = 400 мм, D3 = 200 мм, D4 = 600 мм. Сколь­жением в ременной передаче пренебречь.

Решение

Нарис. 2.40, б изобра­жен вал I. На него поступает мощность N и с него снимаются мощности Nl, N2, N3.

Определим угло­вую скорость враще­ния вала 1 и внешние скручивающие момен­ты m, m1, т2, т3:

 
 

Строим эпюру крутящих моментов для вала 1 (рис. 2.40, в). При этом, двигаясь от левого конца вала, условно считаем моменты, соответствующие N3 и N1, по­ложительными, а N — отрицательным. Расчетный (макси­мальный) крутящий момент Nx1 max = 354,5 H*м.

Диаметр вала 1 из условия прочности

Диаметр вала 1 из условия жесткости ([Θ], рад/мм)

Окончательно принимаем с округлением до стандарт­ного значения d1 = 58 мм.

Частота вращения вала 2

 

На рис. 2.40, г изображен вал 2; на вал поступает мощность N1, а снимаются с него мощности N4, N5, N6.

Вычислим внешние скручивающие моменты:

 

Эпюра крутящих моментов для вала 2 показана на рис. 2.40, д. Расчетный (максимальный) крутящий момент Мя max" = 470 H-м.

Диаметр вала 2 из условия прочности

Диаметр вала 2 из условия жесткости

Окончательно принимаем d2=62 мм.

 

 

Пример 9. Определить из условий прочности и жесткости мощность N (рис. 2.41, а), которую может передать стальной вал диаметром d = 50 мм, если [тк] = 35 Н/мм2, [ΘJ = 0,9 град/м; G = 8,0* I04 Н/мм2, n = 600 об/мин.

Решение

 

Вычислим внешние моменты, приложенные к валу:

где

Расчетная схема вала показана на рис. 2.41, б.

На рис. 2.41, в пред­ставлена эпюра крутящих моментов. Расчетный (мак­симальный) крутящий мо­мент Mz = 9,54N. Условие прочности

откуда

Условие жесткости

откуда

Лимитирующим является условие жесткости. Следо­вательно, допускаемое значение передаваемой мощности [N] = 82,3 кВт.



Дата добавления: 2020-08-31; просмотров: 660;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.024 сек.