ИСПОЛЬЗОВАНИЕ ЦВЕТА В КОМПЬЮТЕРНОЙ ГРАФИКЕ


 

Ахроматический и хроматический цвет

 

Так как свет является еще и волной, то, разумеется, он имеет длину волны. Длин волн бесконечное множество, но наш глаз в состоянии регистрировать только их небольшой диапазон, известный под названием видимой части спектра.

Цвет имеет психофизиологическую и психофизическую природу. Цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет и от системы человеческого видения. Некоторые предметы отражают свет (стена), другие его пропускают (стекло). Если поверхность, которая отражает только синий цвет, освещается красным светом, она будет казаться черной. Если источник зеленого света рассматривается через стекло, пропускающее только красный свет, он тоже покажется черным.

Зрительная система человека воспринимает электромагнитную энергию с длинами волн от 400 до 700 нм как видимый свет.

Источник или объект являются ахроматическим, если наблюдаемый свет содержит все видимые длины волн в примерно равных количествах. Ахроматический источник кажется белым, а свет от него — белым, черным или серым. Ахроматический свет — это то, что мы видим на экране черно-белого телевизора. Белыми выглядят объекты, ахроматически отражающие более 80 % света белого источника, а черными — менее 3 %. Промежуточные значения дают различные оттенки серого цвета.

Ахроматический свет характеризуется интенсивностью (яркостью). Свет называется хроматический, если он содержит длины волн в произвольных неравных количествах. Если длины волн сконцентрированы у верхнего края видимого спектра, то свет кажется красным, если у нижнего — то синим.

Но сама по себе эл/м энергия определенной длины волны не имеет никакого цвета. Ощущение цвета возникает в результате преобразования физических явлений в глазу или мозге человека. Объект кажется цветным, если он отражает или пропускает свет лишь в узком диапазоне длин волн и поглощает все остальные.

 

а б

 

Рис. 15.1

 

Психофизиологическое представление света опр-ся:

1) цветовой тон

2) насыщенность

3) светлота

Цветовой тон позволяет различать цвета (к, з, с).

Насыщенность определяет степень ослабления (разбавления) данного цвета белым цветом и позволяет различать розовый цвет от красного, голубой от синего. У чистого цвета насыщенность = 100 % и уменьшается по мере добавления белого. Насыщенность ахроматического цвета = 0 %.

Светлота — это интенсивность, которая не зависит от цветового тона и насыщенности. Ноль - значит черный, более высокие значения характеризуют более яркие значения.

Психофизические определяющие цвета:

1) доминирующая длина волны

2) чистота

3) яркость.

Доминирующая длина волны определяет монохроматический цвет (рис. б) Þ l = 520 нм ® зеленый.

 

 

Рис. 15.2

 

Чистота характеризует насыщенность цвета и определяется отношением Е1 и Е2. Е1 — характеризует степень разбавления чистого цвета с l = 520 нм белым. Если Е1 стремится к 0, то чистота — к 100 %, если Е1 ­стремится к Е2, то свет — к белому и чистота — к 0.

Яркость пропорциональна энергии света и рассматривается как интенсивность на единицу площади. Для ахроматического света яркость есть интенсивность.

Художники используют другие характеристики цвета:

1) разбелы

2) оттенки

3) тона.

Разбелы получаются при добавлении в чистый цвет белого, оттенки — черного, тона — и черного, и белого.

 

 

Рис. 15.3

 

Обычно встречаются не чистые монохроматические цвета, а их смеси. В основе 3-х компонентной теории света лежит предположение о том, что в сетчатке глаза есть 3 типа чувствительных к свету колбочек, которые воспринимают соответственно зеленый, красный и синий цвета. Относительная чувствительность глаза максимальна для зеленого цвета и минимальна для синего. Если на все 3 типа колбочек воздействует одинаковый уровень энергетической яркости (энергия в единицу t), то свет кажется белым.

 

 

Рис. 15.4

 

Цветовые модели

 

RGB цвета используются в телевидении и выводе изображений на экран монитора. Эти три цвета дают возможность воспроизвести большинство цветов, которые вы можете видеть. Большинство, но не все. Цвета, производимые монитором, не являются абсолютно чистыми, поэтому и все производимые ими оттенки не могут быть воспроизведены с точностью.


 

Рис. 15.5

 

Более того, яркостный диапазон мониторов сильно ограничен. Человеческий глаз в состоянии различать гораздо больше градаций яркости. Максимальная яркость монитора едва ли соответствует и половине максимальной яркости, которую наш глаз способен различить. Это часто может привести к сложностям при отображении сцен из реального мира, которые содержат широкие вариации яркости. Например, фотография пейзажа с фрагментом неба и участками земли находящимися в полной тени.

При моделировании света на компьютере все три цвета обрабатываются отдельно, за исключением каких-либо нестандартных ситуаций, когда цвета не влияют друг на друга. Иногда полноцветные изображения получают путем последовательного просчета красного, зеленого и синего изображений и их дальнейшим комбинированием.


 

Рис. 15.6

 

Обычно компьютеры оперируют со светом в виде величин, определяющих количество содержащихся в нем красного, зеленого и синего цветов. Например, белый - это равное количество всех трех, Желтый - равное количество красного и зеленого и полное отсутствие синего. Все цветовые оттенки можно визуально представить в виде куба, где по осям координат будут отложены соответствующие величины трех исходных цветов. Это и есть трехцветная световая модель (RGB Model).

 

Системы смешивания основных цветов

1. Аддитивная — красный зеленый синий (RGB)

2. Субтрактивная — голубой (cyan, точнее сине-зеленый),

пурпурный (magenta), желтый (yellow)

 

 

Рис. 15.7

 

Цвета одной системы являются дополнением к другой. Дополнительный цвет — это разность белого и данного цвета (Г=Б-К, П=Б-З, Ж=Б-С).

Аддитивная цветовая система удобна для светящихся поверхностей (экраны ЭЛТ, цветовые лампы). Субтрактивная цветовая система используется для отражающих поверхностей (цветные печатные устройства, типографские краски, несветящиеся экраны).

Уравнение монохроматического цвета:

 

С=rR+gG+bB,

где C — цвет,

R, G, B — 3 потока света,

r, g, b — относительные количества потоков света (от 0 до 1).

Соотношение между двумя цветовыми системами можно выразить математически:

 

 

Цветовые пространства RGB и CMY 3-хмерны и условно их можно изобразить в виде куба;

 

 

Рис. 15.8

 

Началом координат в цветном кубе RGB является черный цвет, а в CMY — белый. Ахроматические, т.е. серые цвета, в обеих моделях расположены по диагонали от Б до Ч.

Модели RGB и CMY аппаратно-ориентированы. Модель HVS ориентирована на пользователя. В основе лежат интуитивно принятые художниками понятия разбела, оттенка, тона.

 

Цветовая модель HSV

Смит предложил построить модель субъективного восприятия в виде объемного тела HVS

(Н — цветовой тон (Hue)

S — насыщенность (Saturation)

V — светлота (Value))

Если цветной куб RGB спроецировать на плоскость вдоль диагонали Б-Ч, получается шестиугольник с основными и дополнительными цветами в вершинах. Интенсивность возрастает от 0 в вершине до 1 на верхней грани. Насыщенность определяется расстоянием от оси, а тон — углом (0° — 360°), отсчитываемым от красного цвета. Насыщенность меняется от 0 на оси до 1 на границе шестиугольника.

 

 

Рис. 15.9

 

Насыщенность зависит от цветового охвата (расстояние от оси до границы). При S=1 цвета полностью насыщены. Ненулевая линейная комбинация трех основных цветов не может быть полностью насыщена. Если S=0, Н неопределен, т.е. лежит на центральной оси и является ахроматическим (серым)

— чистые цвета у художников: V=1, S=1

— разбелы — цвета с увеличенным содержанием белого, т.е. с меньшим S (лежат на плоскости шестиугольника)

— оттенки — цвета с уменьшенным V (ребра от вершины)

— тон — цвета с уменьшенным S и с уменьшенным V.

 

Модель HLS

В основе цветной модели HLS, применяемой фирмой Textronix, лежит цветная система Оствальда.

Н — цветовой тон (Hue)

L — светлота (Lightness)

S — насыщенность (Saturation)

Модель п.с. двойной шестигранный конус. Цветной тон задается углом поворота вокруг вертикальной оси относительно красного цвета. Цвета следуют по периметру, как и в модели HVS. HLS — результат модификации HSV за счет вытягивания вверх белого цвета. Дополнение каждого цвета отстоит на 180° от этого цветового тона. Насыщенность измеряется в радиальном направлении от 0 до 1. светлота измеряется вертикально по оси от 0 (Ч) до 1 (Б).

 

 

Рис. 15.10

 

Для ахроматических цветов S=0, а максимально насыщенные цветовые тона получаются при S=1, L=0,5.

 

Цилиндрическая цветовая модель

Используется цветовая система Манселла, основанная на наборе образцов света. Система Манселла — это стандарт восприятия. Цвет определяется:

— цветовым тоном

— насыщенностью

— светлотой

 

 

Рис. 15.11

 

На центральной оси — значение интенсивности меняется от черного к белому. Цветовой тон определяется углом. Главное преимущество — одинаковые приращения насыщенности, тона и интенсивности вызывают ощущения одинаковых изменений при восприятии.

 

Цветовая гармония

 

Цветные дисплеи и устройства получения твердых копий позволяют создавать широкий диапазон цветов. Одни цветовые сочетания хорошо гармонируют друг с другом, другие — взаимно несовместимы. Как отбирать цвета, чтобы они гармонировали друг с другом?

— Выбор цветов обычно определяется путем проведения гладкой траектории в цветовом пространстве и/или путем ограничения диапазона используемых цветов в цветовой модели плоскостями (или шестигранными конусами) постоянной насыщенности

— Использование цветов одного и того же цветового тона

— Использование двух дополнительных цветов и их смесей

— Использование цветов постоянной светлоты

При выборе цветов случайным образом, они будут выглядеть слишком яркими. Смит провел эксперимент, где сетка 16´16 заполнялась цветами случайным образом и имела мало привлекательный вид.

— Если рисунок включает несколько цветов, то в качестве фона надо использовать дополнение к одному из них. Если цветов много, то фон лучше сделать серым.

— Если 2 примыкающих друг к другу цвета не гармонизируют, их можно разделить черной линией.

— С физиологической точки зрения низкая чувствительность глаза к синему цвету означает, что на черном фоне трудно различить синий цвет. Отсюда следует, что желтый цвет (дополнительный к синему) трудно различить на белом (дополнительный к черному).

 

СЖАТИЕ ИЗОБРАЖЕНИЙ

 

Основные сведения

 

Стоит начать считывать цветные или полутоновые изображения сканером в ½ формата А4 и 100 Мб-ый диск будет заполнен меньше чем за 1 час (размер графического файла от 400 Кб до нескольких Мб). А сравнимый по качеству с телепередачей компьютерный фильм требует хранения данных объемом около 22 Мб/сек. Поэтому остро встала проблема сжатия и восстановления информации. Но сжатие файла сильно зависит от его структуры.

Принципиально сжатие делят на архивацию и компрессию. Первое - без потери качества, второе - с потерями. Разница между этими способами в том, что второй не подразумевает полного восстановления исходного сохраненного изображения в полном качестве. Но каким бы не был алгоритм компрессии данных, для работы с ним файл нужно проанализировать и распаковать, т. е. вернуть данные в исходный незапакованный вид для их быстрой обработки (обычно это происходит прозрачно для пользователя).

Архивация, или сжатие графических данных, возможно как для растровой, так и для векторной графики. При этом способе уменьшения данных, программа анализирует наличие в сжимаемых данных некоторых одинаковых последовательностей данных, и исключает их, записывая вместо повторяющегося фрагмента ссылку на предыдущий такой же (для последующего восстановления). Такими одинаковыми последовательностями могут быть пикселы одного цвета, повторяющиеся текстовые данные, или некая избыточная информация, которая в рамках данного массива данных повторяется несколько раз. Например, растровый файл, состоящий из подложки строго одного цвета (например, серого), имеет в своей структуре очень много повторяющихся фрагментов.

Компрессия (конвертирование) данных - это способ сохранения данных таким образом, при использовании которого не гарантируется (хотя иногда возможно) полное восстановление исходных графических данных. При таком способе хранения данных обычно графическая информация немного "портится" по сравнению с оригинальной, но этими искажениями можно управлять, и при их небольшом значении ими вполне можно пренебречь. Обычно файлы, сохраненные с использованием этого способа хранения, занимают значительно меньше дискового пространства, чем файлы, сохраненные с использованием простой архивации (сжатия). Суть методов сжатия с потерей качества - ликвидировать те места, которые человеческим глазом не воспринимаются или воспринимаются не очень хорошо, другими словами, практически не заметны. Чем выше степень компрессии, тем больше ущерб качеству. Оптимальное решение выбирается для конкретного случая с учетом применения.

Иногда не стоит прибегать к компрессии: проще уменьшить избыточный размер, цветность или разрешение. Результат тот же - уменьшение размера.

 



Дата добавления: 2016-07-18; просмотров: 1953;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.021 сек.