Уход за трансформаторным маслом
Масло в трансформаторах используется в качестве охлаждающей среды и изоляции. В роли охлаждающей среды оно отводит тепло от проводов обмоток. При этом важное значение имеет вязкость масла, изменяющаяся в зависимости от температуры. При положительной температуре масло менее вязко, при отрицательной вязкость возрастает, причем весьма неравномерно для масел различных марок. Высокая вязкость ухудшает прокачиваемость масла, затрудняет работу механизмов систем охлаждения. В связи с этим в эксплуатации вязкость масла нормируется. Она проверяется у свежих сухих трансформаторных масел перед заливкой в оборудование.
Изоляционные свойства трансформаторных масел, находящихся в эксплуатации, характеризуются рядом показателей, значения которых должны быть не ниже следующих:
Класс напряжения трансформатора, ввода, кВ | До 15 | 15-35 | 60-220 | 330-500 | |
Электрическая прочность – пробивное напряжение, кВ | |||||
Содержание кислот | Не более 0,25 мг КОН/г масла | ||||
Содержание водорастворимых кислот и щелочей | Не более 0,014 мг КОН/г масла для трансформаторов 630 кВּА и выше и для герметичных маслонаполненных вводов | ||||
Содержание механических примесей | Отсутствие | ||||
Снижение температуры вспышки масла в трансформаторах | Не более 5°С по сравнению с предыдущим анализом | ||||
Тангенс угла диэлектрических потерь масла для трансформаторов и вводопри 70°С | Не более 7% для масла в оборудовании напряжением до 220 кВ включительно |
Рис. 1.22. Однофазный (а) и двухфазный (б) включения линии с ответвительными подстанциями, на одной из которых нейтраль трансформатора заземлена
В процессе эксплуатации масло загрязняется, увлажняется, в нем накапливаются продукты окисления, при этом масло теряет свои химические и электрофизические свойства, происходит необратимый процесс его старения. Продукты старения в виде шлама накапливаются на активных частях трансформатора, что затрудняет отвод тепла. Масло стареет за счет совместного воздействия на него кислорода воздуха и электрического поля. Активность кислорода усиливается в присутствии влаги, попадающей извне. Окислению способствуют высокие рабочие температуры, солнечный свет, присутствие растворимых в масле солей металлов (особенно меди и железа), являющихся катализаторами окисления. При наличии электрического поля в масле накапливается больше влаги, чем в тех же условиях, но при отсутствии электрического поля. Капли воды и частицы загрязнений располагаются в электрическом поле вдоль его силовых линий, что приводит к резкому снижению электрической прочности масла.
В связи с указанным за состоянием трансформаторных масел ведется систематический контроль.
Отбор проб масла. Качество масла проверяется путем периодического отбора проб и их лабораторного анализа. В зависимости от объема испытаний анализы масла делят на полный и сокращенный. Кроме того, масло испытывают на электрическую прочность; в состав испытания входят определение пробивного напряжения, влагосодержания и визуальное определение механических примесей. Если при лабораторном анализе будут обнаружены более низкие показатели качества масла по сравнению с установленными нормами, принимаются меры по восстановлению утерянных маслом свойств очисткой, осушкой и регенерацией.
Очистка и осушка масла. Масло очищается от механических примесей и влаги центрифугированием и фильтрованием через бумажные фильтры. Высокой степени очистки добиваются использованием центрифуги в комбинации с фильтр-прессом. Этот способ получил широкое применение при очистке масел в работающих трансформаторах напряжением до 110 кВ. В трансформаторах 220 кВ и выше, где к маслу предъявляются повышенные требования в отношении содержания газов (присутствие их играет существенную роль в процессе развития разряда), очистка производится во время ремонта, при этом одновременно ведутся процессы осушки, фильтрации и дегазации масла, а при необходимости и насыщение инертным газом (азотом).
В последнее время получил распространение способ осушки масла при помощи цеолитов. По составу цеолиты являются водными алюмосиликатами кальция или натрия. Они содержат огромное количество пор, имеющих размеры молекул. При фильтровании масла через слой высушенного цеолита находящаяся в масле влага проникает в поры и удерживается в них. Устройство цеолитовой установки показано на рис. 1.23. Отработанные цеолиты восстанавливаются в стационарных установках продувкой горячим воздухом.
Рис. 1.23. Схема цеолитовой установки для осушки масла: 1 - маслонасос; 2 - маслоподогреватель; 3 - фильтр механической очистки; 4 - цеолито-вый фильтр-адсорбер; 5 - манометр; 6 - расходомер
Регенерация - это восстановление окисленного масла или, точнее, удаление из него продуктов старения. На практике обычно сталкиваются с регенерацией эксплуатационных масел с кислотным числом, не превышающим 0,3-0,4 мгКОН/г масла. В условиях эксплуатации для регенерации применяются различного рода адсорбенты. Восстанавливающие свойства адсорбентов основаны на способности осаждать на их поверхности продукты старения, при этом никакой химической реакции не происходит. Между молекулами адсорбента и адсорбируемого вещества действуют силы межмолекулярного притяжения.
Применяются адсорбенты естественного и искусственного происхождения. Из числа естественных чаще других используется отбеливающая земля "зикеевская опора", из искусственных - силикагель (крупнопористый марки КСК и мелкопористый КСМ). Значительно реже применяется активный оксид алюминия, обладающий высокой адсорбционной способностью по отношению к кислым продуктам старения масла.
При регенерации масло прокачивается через наполненный адсорбентом бак-адсорбер. Передвижные адсорберы применяются для регенерации масла как во время ремонта, так и в работающих трансформаторах (рис. 1.24).
Предохранение масла от увлажнения и окисления. Выше были рассмотрены способы поддержания электрической прочности и основных химических показателей масла в пределах установленных норм путем периодической очистки и осушки. Наряду с этим применяются специальные устройства защиты масла в трансформаторах в процессе эксплуатации.
Расширитель трансформатора помимо основной функции - компенсировать изменение объема масла в масляной системе трансформатора вследствие колебаний температуры - позволяет также уменьшить площадь открытой поверхности масла, соприкасающейся с воздухом, что в конечном счете снижает степень окисления, увлажнения и загрязнения масла. Влага и механические примеси, попадая в расширитель из воздуха, осаждаются в его нижней части, откуда легко удаляются при ремонтах.
Воздухоочистительные фильтры (рис. 1.25) устанавливают на опускных (дыхательных) трубах расширителей. В нижней части фильтра размещается масляный затвор 6, работающий по принципу сообщающихся сосудов. Он очищает проходящий через него воздух от механических примесей и, кроме того, устраняет прямой контакт масла в расширителе с окружающей атмосферой. Корпус фильтра заполняется силикагелем 5, осаждающим на своей поверхности частицы воды, содержащиеся в воздухе. Воздух проходит через фильтр при следующих обстоятельствах. С понижением температуры трансформатора объем масла в нем уменьшается. В расширителе создается разрежение. Соотношение уровней масла в затворе изменяется. Когда уровень масла во внешней полости затвора упадет настолько, что обнажится край затворного цилиндра, порция атмосферного воздуха прорвется через затвор, пройдет через поглотитель влаги и попадет в расширитель. При нагревании трансформатора, когда масло начнет оказывать давление на воздушную подушку, в расширителе процесс произойдет в обратном направлении. Затворы рекомендуется заполнять маслом АМГ-10, а в северных районах страны морозостойким маслом МВП.
Рис. 1.24. Схема установки для регенерации масла в трансформаторе, находящемся в работе:
1 - трансформатор; 2 - маслоподогреватель; 3 - адсорбер; 4 - фильтр-пресс
В воздухоочистительных фильтрах применяют силикагель марки КСМ или КСК. Перед зарядкой воздухоочистительного фильтра силикагель просушивают при температуре 140-150°С в течение 8 ч. Для повышения влагопоглощаемости основная масса силикагеля пропитывается хлористым кальцием, а индикаторный силикагель - еще и хлористым кобальтом для придания ему голубой окраски. Влагопоглощаемость белого силикагеля, обработанного хлористым кальцием, больше, чем индикаторного. Поэтому индикаторный силикагель берется в небольшом количестве и размещается напротив смотрового окна 4. Воздухоосушающая способность фильтра определяется визуально по изменению цвета индикаторного силикагеля из голубого в розовый. Розовый цвет даже нескольких зерен индикаторного силикагеля свидетельствует об его увлажнении и необходимости замены всего силикагеля. Средний срок службы силикагеля в воздухоочистительных фильтрах зависит от объема масла в трансформаторе и колеблется в диапазоне 1-2 лет. Замена масла в масляных затворах производится через 2-3 года.
Адсорбционные и термосифонные фильтры получили распространение для непрерывной регенерации масла в трансформаторах в процессе эксплуатации. Их выполняют в виде металлических цилиндров, заполненных сорбентом, поглощающим продукты окисления и влагу из циркулирующего через них масла. Адсорбционные фильтры применяют в системах охлаждения ДЦ и Ц, где обеспечивается принудительная прокачка масла через фильтры, термосифонные фильтры - на трансформаторах с системами охлаждения М и Д. Масло в термосифонных фильтрах перемещается сверху вниз вследствие разности плотностей нагретого и охлажденного масла.
Сорбентом в фильтрах служит силикагель КСК или активный оксид алюминия, которые предварительно должны быть хорошо просушены. Фильтры подключают к трансформаторам со свежим маслом. Очередную замену сорбента производят после того, как кислотное число превысит 0,1-0,12 мгКОН/г масла.
Азотная защита устраняет контакт масла в расширителе трансформатора с атмосферным воздухом, предотвращая тем самым загрязнение и окисление масла. Среди многих известных систем азотной защиты чаще встречается система низкого давления (давление азота не более 3 кПа) с применением эластичной емкости (рис. 1.26). Основным элементом системы является эластичный резервуар б, выполняемый из газонепроницаемого химически стойкого материала (резинотканевая пластина) и соединяемый газопроводом с расширителем трансформатора 1. Система заполняется постоянным количеством азота, давление которого незначительно превышает нормальное атмосферное давление при всех температурных изменениях уровня масла в расширителе. Так, при нагреве трансформатора, когда уровень масла в расширителе поднимается, азот, заполняющий его, переходит в эластичный резервуар, объем которого увеличивается. При понижении уровня масла в расширителе азот переходит в него из резервуара, при этом стенки эластичного резервуара опадают. Для поглощения влаги, которая может по тем или иным причинам поступить в газовую систему из масла или изоляции, а также из газового баллона 8 во время подпитки системы азотом, служит газоосушитель 4.
Рис. 1.25. Воздухоочистительный фильтр трансформатора: 1 - дыхательная трубка трансформатора; 2 - стенка бака; 3 - соединительная гайка; 4 - смотровое окно патрона с индикаторным силикагелем; 5 - зерна силикагеля; 6 -масляный затвор; 7 - указатель уровня масла в затворе
На подстанциях с двумя и более трансформаторами применяется групповая азотная защита с питанием от одного эластичного резервуара. Все элементы и узлы газовой системы трансформаторов тщательно уплотняются, проходят опрессовку азотом при давлении 50 кПа. Масло в трансформаторе должно быть нейтральным, сухим, дегазированным и азотированным. Дегазация масла производится под вакуумом на специальных установках, насыщение азотом - продувками. При трех-четырех продувках кислород в масле практически полностью замещается азотом. Содержание кислорода в газовом пространстве расширителя должно быть не более 1%. При большем содержании кислорода азотная защита масла неэффективна.
Обслуживание азотной защиты. При осмотре устройства проверяют уровень масла в расширителе трансформатора, наполнение эластичных резервуаров азотом, цвет силикагеля в осушителе. Если объем эластичных резервуаров мал и не соответствует уровню масла в расширителе, проверяют внешнее состояние эластичных резервуаров и герметичность соединений всей газовой системы.
При необходимости производится подпитка газовой системы азотом из баллонов. Для этого отключается газовая защита трансформатора, закрывается кран 3 (рис. 1. 26), и система через редуктор и кран 7 заполняется азотом из баллонов до тех пор, пока объем эластичного резервуара не станет соответствовать уровню масла в расширителе. Подключение эластичного резервуара к трансформатору производится в обратном порядке. Последней выполняется операция включения в работу газовой защиты трансформатора.
В нормальном состоянии необходимость в подпитке азотом возникает, как правило, не чаще 1 раза в месяц. Однако передовой опыт свидетельствует о том, что при надежной герметичности соединений всех узлов в надмасляном пространстве подпитку резервуаров азотом производят в среднем 1 раз в год.
Пробы газа отбирают через 6 мес. Если в газовой смеси обнаруживается более 3% кислорода, производится 10-минутная продувка надмасляного пространства в расширителе технически чистым и сухим азотом (с содержанием кислорода не более 0,5%). Продувка азотом производится при открытом вентиле 2. Газовая защита трансформатора выводится из работы на все время продувки. Доливка масла в трансформатор, имеющий азотную защиту, производится через нижний сливной кран 10, при этом проверяется надежность подсоединения маслопровода к крану.
Пленочная защита основана на герметизации масла трансформатора подвижной пленкой, помещаемой в расширителе трансформатора и изолирующей масло в расширителе от соприкосновения с атмосферным воздухом. Конструктивно пленочная защита выполняется в виде эластичного компенсатора, способного изменять свой объем при всех температурных колебаниях объема масла в трансформаторе, или в виде эластичной мембраны, плавающей на поверхности масла и свободно изгибающейся при изменениях объема масла в расширителе. В обоих случаях в надмасляном пространстве трансформатора сохраняется нормальное атмосферное давление.
Уровень масла в расширителе определяется по стрелочному указателю (специальной конструкции), рычаг которого опирается на поверхность пленки. Трансформатор с пленочной защитой заполняется дегазированным маслом. Необходим периодический контроль газосодержания масла.
К недостаткам пленочной защиты относят сложность размещения и герметизации эластичных пленок внутри расширителя, а также невозможность повседневного визуального контроля за их исправностью. Герметичность пленки проверяется при ремонте трансформатора. Внеочередная проверка ее состояния должна проводиться в случае срабатывания газовой защиты трансформатора.
Присадки, увеличивающие срок службы трансформаторного масла. Свежее нормально очищенное масло содержит смолы, являющиеся естественными антиокислителями, защищающими масло от окисления в начальный период. Повышение стабильности регенерированных масел в эксплуатации достигается применением специальных присадок, тормозящих процесс окисления.
Рис. 1.26. Схема азотной защиты масла в трансформаторе с применением эластичной емкости: 1 - расширитель трансформатора;
2 - вентиль продувки азотом надмасляного пространства; 3 - кран питания системы азотом; 4 - осушитель силикагелевый (или цеолитовый); 5 -вентиль эластичного резервуара; 6 - эластичный резервуар; 7 - кран подключения баллона с редуктором и манометрами давления; 8 - газовый баллон; 9 - защитный металлический кожух; 10 - сливной кран; 11 - газовое реле; 12 - редуктор
В зависимости от механизма действия присадки относят к следующим группам:
1) ингибиторы - антиокислители;
2) деактиваторы - вещества, уменьшающие каталитическое действие растворимых в масле соединений, содержащих металлы;
3) пассиваторы - вещества, образующие на металле пленку, предохраняющую масло от каталитического действия металлов.
Широкое применение нашли такие присадки, как ионол, антраниловая кислота и др. Ионол - типичный ингибитор. Будучи введенным в масло в количестве 0,2% массы масла, он эффективно замедляет образование осадка в хорошо очищенных маслах, тормозит рост tgd.
Антраниловая кислота - присадка, обладающая многофункциональным действием. Это сильный деактиватор и пассиватор, но слабый ингибитор. При введении в масло антраниловой кислоты (0,02-0,05%) коррозия меди и железа практически прекращается.
Эффективно одновременное применение ионола и антраниловой кислоты.
Доливку масла в трансформаторы, залитые маслом с присадками, производят таким же маслом, которое было залито первоначально.
Не допускается смешение масел из нефти различных месторождений без проверки влияния на них присадок.
Дата добавления: 2020-07-18; просмотров: 576;