Методика составления уравнений состояния на основе принципа наложения


Данная методика составления уравнений состояния вытекает из разделения исходной цепи на две подсхемы:

- первая включает в себя элементы, запасающие энергию, а также нелинейные резистивные элементы и источники питания;

-вторая охватывает линейные резистивные элементы.

Пример такого представления исходной цепи приведен на рис. 1,а, где пассивный многополюсник П соответствует второй подсхеме .

Следующий этап рассматриваемой методики заключается в замене на основании теоремы о компенсации всех конденсаторов, а также нелинейных резистивных элементов с характеристикой типа u(i) источниками напряжения, а всех катушек индуктивности и нелинейных резистивных элементов с характеристикой типа i(u) – источниками тока (рис. 1,б). В результате исходная цепь трансформируется в резистивную, в которой, помимо заданных (независимых) источников, действуют управляемые источники.

 


Рис. 1

На третьем этапе с использованием метода наложения определяются выражения входных токов и напряжений пассивного многополюсника П через напряжения и токи всех присоединенных к нему источников.

В качестве примера составим уравнения состояния для цепи на рис. 2,а и определим выражения и .


а) б)
Рис.2

 

1. В соответствии с изложенной методикой заменим исходную цепь схемой замещения на рис. 2,б. На основании метода наложения этой схеме соответствует пять цепей, приведенных на рис. 3. С их использованием для тока =dq/dt в ветви с конденсатором и напряжения на зажимах катушки индуктивности запишем

(2)

 

а) б) в)

г) д)


Рис. 3

 

(3)

2. Выражение для искомого напряжения определяется согласно закону Ома:

( 4)

На основании метода наложения с использованием расчетных схем на рис. 3 для второй искомой переменной – тока запишем

 

( 5)

 

3. Объединив (2) (5) с учетом , получим матричное уравнение вида (1):

 

= .

 

Вектор начальных значений = .

Сравнивая в заключение рассмотренные методики составления уравнений состояния, можно отметить, что методика, основанная на использовании принципа наложения, не содержит достаточно сложного этапа исключения переменных резистивных ветвей из уравнений состояния, входящего в методику составления уравнений на основе таблицы соединений. Вместе с тем использование метода наложения для сложных цепей может также оказаться весьма трудоемкой задачей.

 



Дата добавления: 2016-07-05; просмотров: 1291;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.