Практическое задание N 2. 25


 

1. Построить десять траекторий полета баллистической ракеты, рассчитанных разностным моделированием. Начальная скорость V0=1,м/с, тяга двигателя P=2. 5Е6,н, стартовая масса M0 = 1. 5Е5, кг, расход топлива z= 700, кг/с, время работы двигателя Tk = 200, с.

2. Построить траектории полета двухступенчатой баллистической ракеты, рассчитанные разностным моделированием. Начальная скорость V0 = 1,м/с, стартовая масса M0 = 3Е5, кг, для первой ступени: тяга P1 =5Е6, н, расход топлива z1= 1700, кг/с, время работы двигателя Tk1 = 130, с. Для второй ступени: тяга P2 = 1. 1Е6, н, расход топлива z2= 300, кг/с, время работы двигателя Tk2 = 230, с.

Примечание к п. 1, 2: сопротивление воздуха и вращение Земли не учитывать. Угол запуска ракеты к горизонту = 900 -N*0. 0020, где N= 1, 2, 3, ..., 10. Во время работы двигателя dt=0. 05, c, затем dt=0. 5, c.

3. Построить траекторию полета спутника Земли при включении двигателя, рассчитанную разностным моделированием. Начальные условия на высоте H=400000 м принять следующие: скорость V0=W1 и направлена по касательной к окружности, M0=11000, кг, тяга двигателя P=4Е5, н, расход топлива z=100, кг/с, время работы двигателя Tk = 70, с. Рассчитать скорость спутника при работе двигателя по формуле Циолковского: V = V0 + U*ln(M0/M), где U = P/z.

Через каждые 10 секунд выводить на экран время полета спутника и скорость.

 

Рассмотрим задачу расчета траектории точки, прикрепленной к упругой нити, и движущейся с начальной скоростью "V1" под углом "fi" к оси "x" из точки с координатами (x1, y1), без учета сил сопротивления воздуха. Эта задача моделирует известную игрушку - мяч, привязанный на резинке.

Пусть точка имеет массу "M", длина нити "L". Полагаем, что нить невесома и абсолютно упруга. Коэффициент упругости "Kn".

Оси координат проведем через точку закрепления нити вверх и влево. Расчетную область ограничим: X_min = Y_min = -Lm, X_max = Y_max = Lm,

 

где Lm = abs(V1* Ö(M/Kn)) + Ö(x12 + y12) + L + 2*M*g/Kn.

 

Y V1   x,y     0 X

 

 

Период свободных колебаний груза,

подвешенного на упругой нити:

 

T = 6, 28* Ö(M/Kn). Примем dt = T/300.

 

Проекции ускорения определяются как дискретная функция расстояния " r " от начала координат до точки закрепления нити: если r <= L, то ускорение от сил упругости равно нулю, в остальных случаях:

 

Ax = -x*Ky*dr/(r*M);

Ay = -y*Ky*dr/(r*M) - 9.81; где dr = (r-L) > 0.

 

Проекцию ускорения на ось “Х” от сил упругости, запишем в виде функции:

 

FUNCTION FA(x, r, L, Kn, M: double): double;

begin if (r-L)>0 then FA:= -x*Kn*(r-L)/(r*M) else FA:= 0 end;

 

Аналогичная функция составляется для проекции ускорения на ось “У”. Методика расчета соответствует приведенной для движения спутника в поле тяготения планеты.

 

 



Дата добавления: 2016-06-29; просмотров: 1359;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.