Практическое задание N 2. 24


 

1. Рассчитать разностным моделированием и по аналитической зависимости траектории полета спутника Земли. Аналитическая зависимость имеет вид:

 

r = P/(1 + e*cos(fi));

где e = P/R0 - 1; P = (V0* R0/Rz)2/g ; 0 <= fi = 2*Pi.

 

В начальный момент времени известны координаты спутника: x1 = R0; y1 = 0;

и скорость: Vx1 = 0; Vy1 = V0; Рассмотреть случаи:

1_1. Начальная скорость V0 <= W1, высота H = 300000, м.

1_2. Начальная скорость W1 <= V0 < W2, высота H = 400000, м.

1_2. Начальная скорость V0 >= W2, высота H = 500000, м.

Примечание:Построить траектории полета спутника. Через равные промежутки времени выводить на экран время полета спутника, скорость и высоту.

2. Рассчитать разностным моделированием и построить траектории полета спутника вокруг двух планет (типа “Земля”), при V0 < W2, в случаях:

       
   


1) V0 Rz Rz 2) Rz V0 Rz

 

 

3. Рассчитать разностным моделированием и построить траектории полета двух планет типа “Земля” и их центра масс, при V0 < W2, в случаях:

       
   


V0 V0 V0

1) 20 *Rz 2) 20 *Rz


V0

 

 

Рассмотрим задачу расчета траектории точки переменной массы, движущегося под действием реактивной тяги. Движение точки в этом случае описывается уравнением Мещерского:

A = (U/M)*(dM/dt) + F/M

Где A - ускорение точки, M - масса точки.

U - скорость реактивной струи относительно точки,

F - результирующая внешних сил, действующих на точку,

Учитывая, что F = kz*M/r2- сила притяжения направлена к центру Земли, а P = U*(dM/dt)- реактивная сила двигателя (тяга) направлена по касательной к траектории движения, определяем проекции ускорения на оси координат:

 

Ax = P*Vx/(M*V) - kz*x/(r3); Ay = P*Vy/(M*V) - kz*y/(r3);

 

Где V = Ö(Vx2 + Vy2 )- скорость точки,

r = Ö( x2 + y2 ) - расстояние до центра Земли,

Vx , Vy - проекции скорости точки на оси координат, x, y - координаты точки.

Полагая расход топливаz = dM/dtпостоянным, массу точки можно определить по формуле: M = M0 - z*t; при t < Tk,

где M0 - начальная масса точки, Tk - время работы двигателя.

 



Дата добавления: 2016-06-29; просмотров: 1552;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.