Влияние ксенона на работу реакторов в переходных режимах.
Как отмечалось выше, скорость изменения концентрации 135Xe определяется тремя процессами:
1) образование 135Xe в результате распада 135I;
с другой – выведение из реактора ксенона вследствие:
2) поглощения ксеноном нейтронов,
3) его распада.
Все три процесса имеют неодинаковые скорости и различное влияние на концентрацию 135Xe (а, следовательно, на реактивность реактора) в режимах набора мощности и остановки.
После остановки реактора, т.е. при нулевом потоке нейтронов, поглощение нейтронов на 135Xe отсутствует. На изменение концентрации 135Xe в этом случае влияют два конкурирующих процесса:
1) распад 135I оставшегося после работы реактора. Заметим, что его концентрация пропорциональна потоку нейтронов (или мощности) в реакторе перед его остановкой (стационарная концентрация, получаемая приравниванием правых частей системы к 0):
2) распад 135Xe.
На рисунке показано относительное изменение концентрации 135Xe после момента остановки для разных значений потока нейтронов перед остановкой. Концентрация 135Xe достигает максимального значения через ~ 10 часов после остановки. Значение максимума тем выше, чем больший поток нейтронов был в реакторе перед его остановкой. Поскольку образование в реакторе 135Xe равносильно вводу в него отрицательной реактивности, абсолютное значение которой пропорционально концентрации ксенона, то изменение реактивности во времени ведет себя точно так же, как и концентрация 135Xe.
Зависимость относительной концентрации Xe135 после останова реактора от времени.
Уменьшение реактивности реактора после его остановки, обусловленное отравлением ксеноном, называется йодной ямой, т.к. причиной этого эффекта является β – распад 135I. Максимальная глубина йодной ямы при Ф ~ 5·1014 н/см2 с достигается через ~ 10 часов после остановки.
Чтобы избежать попадания в йодную яму вновь пускать реактор следует в возможно короткий срок после его остановки и при наличии достаточного запаса реактивности для компенсации отрицательной реактивности.
При отсутствии необходимого запаса реактивности реактор может быть пущен вновь не ранее чем через 20-40 часов (время выхода из йодной ямы, т.е. время распада 135Xe до приемлемого уровня), в зависимости от потока нейтронов в реакторе перед его остановкой (от 1013 до 1014 н/см2 с). При потоке менее ~ 5∙1012 н/см2 с йодная яма практически отсутствует.
Явление подобно йодной яме, но значительно меньших масштабах и объясняемое тем же самым физическим механизмом, возникает при переходе с большего уровня мощности на меньший. При переходе с меньшей мощности на большую наблюдается эффект обратный йодной яме - концентрация 135Xe вначале уменьшается, что объясняется большим его выгоранием на больших потоках нейтронов, и только через некоторое время (~ 10 – 15 часов) начинает увеличивается.
Изменение концентрации Xe135 в переходных режимах реактора.
Дата добавления: 2016-06-29; просмотров: 2851;