Траектория, скорость и ускорение точки при задании движения в декартовой системе координат.


Траектория, скорость и ускорение точки при векторном способе задания движения.

Положение точки в пространстве определяется радиус-вектором.

Уравнение движения в векторной форме: r=r(t)

Траектория точки - годограф ее радиус-вектора.

Скорость:

Ускорение:

Траектория, скорость и ускорение точки при задании движения в декартовой системе координат.

Положение точки М в пространстве с использованием данной системы координат задается ее координатами x, y, z.

Чтобы знать положение точки в пространстве в любой момент времени необходимо иметь уравнения движения точки в виде: x=x(t), y=y(t), z=z(t).

x=x(t), y=y(t), z=z(t) - представляют собой уравнения движения точки в декартовой системе координат и одновременно являются уравнениями траектории точки, записанными в параметрической форме, где параметром является время t. Чтобы найти уравнение траектории в форме непосредственной зависимости между координатами x, y, z, из системы уравнений x=x(t), y=y(t), z=z(t) необходимо исключить время. В таком случае траекторию будет определять, например, система уравнений вида: f1(x,y)=0, f2(x,z)=0. Следовательно, траектория

представляет собой линию пересечения цилиндрических поверхностей, уравнения которых составляют систему f1(x,y)=0, f2(x,z)=0.

Скорость: . Таким образом, скорость точки представляет собой сумму составляющих векторов, параллельных осям декартовой системы координат: , где , а ее численное значение (модуль) определяется по формуле: .

Ускорение: , проекции ускорения на оси декартовой системы координат будут , составляющие ускорения, параллельные осям координат, определятся как , а численное значение ускорения будет равно: . Проекцию ускорения на ось, совпадающую по направлению с вектором скорости. для определения характера движения точки (т.е. ускоренно или замедленно она движется) можно в данном случае найти, в виде: .



Дата добавления: 2018-11-26; просмотров: 1936;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.