Требования, предъявляемые к ЖРТ


 

Основные требования, предъявляемые к ЖРТ и идущие от особенностей ЖРДУ и ЛА, можно разбить на четыре группы:

1. Энергетические требования.

2. Эксплуатационные требования для обеспечения надежной работы

двигателя.

3. Требования при эксплуатации топлив вне двигателя.

4. Экономические требования.

Энергетические требования:

- высокая теплопроизводительность;

- высокая температура продуктов сгорания;

- низкая молекулярная масса продуктов сгорания;

- высокая плотность топлива.

Если под энергетической эффективностью ЖРТ понимать совместное влияние удельного импульса тяги и плотности топлива на конечную скорость ступени ЛА, то для обеспечения высокой эффективности необходимо в общем случае учитывать все четыре требования.

Наиболее эффективные ракетные топлива должны обладать высокой теплопроизводительностью химической реакции; малой молекулярной массой продуктов сгорания и высокой плотностью компонентов.

Для получения высокотеплопроизводительных топлив в качестве окислителей выгодно использовать фтор, кислород или соединения с большим содержанием реакционноспособных F2 и 02. В качестве горючих выступают элементы первых трех периодов и, в первую очередь, водород, углерод и обогащенные водородом соединения углерода и азота.

Наиболее высокоэнергетическим ЖРТ является фторводородное топливо, теоретический удельный импульс в пустоте которого составляет 4880 , Рк= 15 Мпа, ок = 1. Несмотря на низкую плотность водорода, высокое стехиометрическое массовое соотношение компонентов обеспечивает приемлемую плотность. Однако фторводородное ЖРТ не нашло пока применения в ракетной технике из-за таких эксплуатационных свойств, как высокая токсичность собственно фтора и продуктов сгорания, высокая коррозионная активность. Кроме того, высокая температура продуктов сгорания вызывает трудности с охлаждением камеры и неизбежные при этом потери удельного импульса.

Высоким удельным импульсом обладает кислородно-водородное топливо, прочно вошедшее в ракетнокосмическую технику

Продукты сгорания кислородно-водородного топлива нетоксичны, а сами компоненты коррозионно-неактивны, что создает благоприятные эксплуатационные условия. К сожалению, кислород и водород при криогенных и обычных температурах не обеспечивают самовоспламенения, поэтому для процесса горения необходима система зажигания.

 

Эксплуатационные требования для обеспечения надежной работы двигателя. Жидкостной ракетный двигатель является высокотеплонапряженным преобразователем тепловой энергии топлива в кинетическую энергию струи, и для его работы необходимо обеспечить надежное охлаждение камеры. Охлаждение огневой стенки камеры обычно осуществляют компонентами топлив. Охлаждающая способность компонента в значительной степени определяется комплексом его теплофизических свойств.

Топливо или его компонент, являющийся охлаждающей жидкостью, должны обладать:

1. Высокой удельной теплоемкостью, при этом единицей веса жидкости поглощается наибольшее количество тепла.

2. Высокой теплопроводностью. Такая жидкость способна пропускать и распределять по объему большие тепловые потоки.

3. Значительной скрытой теплотой парообразования. При более высокой скрытой теплоте парообразования охлаждающая жидкость закипит при более высокой Т и будет способна отнять от стенок большее количество тепла.

4. Наиболее высокой температурой кипения, что обеспечивает большую надежность охлаждения без вскипания жидкости в охлаждающем тракте.

5. Высокой химической стойкостью против разложения при высокой температуре в охлаждающем тракте двигателя, что обеспечивает надежность охлаждения двигателя жидкостью с одинаковыми, принятыми в расчете, физическими свойствами.

6. Наименьшей возможной вязкостью, так как при высокой вязкости резко растут гидравлические сопротивления, увеличивается давление насосов, что ведет к увеличению веса турбонасосного агрегата (ТНА).

7. Наименьшим коэффициентом поверхностного натяжения, что способствует лучшему растеканию по поверхности охлаждающей жидкости и исключает возможность образования паровых пузырей, вызывающих местные перегревы и точечные прогары стенок камеры.

8. Высокой скоростью сгорания;

9. Малым периодом задержки воспламенения.

Требования при эксплуатации топлив вне двигателя. Эксплуатационные требования определяются свойствами топлив. Ими же определяются и эксплуатационные затраты, связанные с заправкой, хранением и контролем. Выбор конструкционных материалов зависит как от коррозионной активности компонентов топлива, так и от их температуры застывания. Длительное хранение ЛА в заправленном состоянии требует высокой стабильности компонентов топлива. Отработка ЖРДУ на нетоксичных, пожаро- и взрыво-безопасных топливах значительно упрощается вследствие снижения требований по герметичности, значительного удешевления стендовой базы, транспортных расходов. Значение эксплуатационных требований возрастает для пилотируемых ЛА, а также для аппаратов многократного использования и длительного хранения. Наконец, экологические проблемы требуют дополнительного и подробного анализа воздействия компонентов топлива и их продуктов сгорания на окружающую среду. Поэтому в данном случае желательно использовать нетоксичные, пожаробезопасные, взрывобезопасные, коррозионно-неактивные, стабильные при длительном хранении имеющие низкую температуру застывания, жидкие ракетные топлива.

Большие эксплуатационные затруднения создают коррозионно-активные компоненты топлива. Высокой коррозионной активностью отличаются азотная кислота, окислители на ее основе, а также азотный тетраксид. Приходится использовать только такие материалы, на которых образуется пассивная пленка, предохраняющая металл от воздействия окислителя. Например, при воздействии азотнокислого окислителя на поверхности алюминия образуется тонкая пленка окиси Аl2О3, надежно защищающая металл от дальнейшего окисления.

Скорость коррозии металла в окислителе увеличивается с увеличением содержания воды и температуры окислителя. Для уменьшения коррозии широко используются ингибиторы коррозии: йод и его соли, фтористый водород, ортофосфорная и серная кислоты. Так, например, коррозия легированной хромоникелевой стали уменьшается примерно в 10 раз при добавлении в красную дымящую азотную кислоту (КДАК) 1 % ортофосфорной кислоты.

Продукты коррозии металлов в азотно-кислотном окислителе могут забивать фильтры, каналы малого сечения в топливно-регулирующей аппаратуре и являться причиной отказа ЖРДУ. Особенно жестко контролируется наличие твердых примесей в двигательных установках длительного хранения.

Важным эксплуатационным свойством компонентов ЖРТ является их стабильность при длительном хранении. Один из наиболее ненадежных компонентов ЖРТ при этом — перекись водорода, склонная к самопроизвольному разложению. Стабильность перекиси возрастает с увеличением ее чистоты и концентрации. Для стабилизации технической перекиси водорода используются оловянная, орто- и пирофосфорная кислоты, а также их соли (1-3%).

Для обеспечения длительного хранения перекиси водорода в составе заправленной ЖРДУ необходимо использовать комплексный подход, который может быть реализован при:

1) обеспечении чистоты исходного продукта;

2) выборе конструкционных материалов, исключающих каталитическое воздействие (исключаются серебро, платина, свинец, ртуть, органические соединения и др.);

3) использовании стабилизаторов, дезактивирующих катализаторы разложения;

4) удалении продуктов разложения из системы подачи топлива.

 

Большое значение для систем подачи топлива ЖРДУ имеет температурный диапазон существования компонента топлива в жидкофазном состоянии. Длительная стоянка ЛА в заправленном состоянии при температуре окружающей среды не позволяет использовать ряд компонентов с хорошими энергетическими свойствами. Так, четырехокись азота при нормальном давлении кипит при 294 К и при 262 К застывает. Концентрированная перекись водорода застывает при 276 К, а трифторид хлора кипит при 285 К. Для задач, связанных с длительным хранением компонентов в заправленном состоянии, приходится либо ставить специальную систему термостатирования, либо использовать смешанные окислители (АК-20, АК-27 и др.) с более широким температурным диапазоном, но несколько худшими энергетическими характеристиками. Постановка системы термостатирования усложняет весь ракетный комплекс.

Заметное усложнение ЖРДУ вызывает применение несамовоспламеняющихся компонентов. В этом случае приходится использовать систему зажигания (химическую, электрическую, пиротехническую либо газодинамическую). Использование пусковых самовоспламеняющихся компонентов топлива влечет на собой введение дополнительных емкостей, трубопроводов, клапанов и агрегатов управления. Для электрозажигания требуется источник электроэнергии, при этом усложняется конструкция головки камеры, на которой размещается блок зажигания. Пиротехническая система предусматривает постановку нескольких пиропатронов, газоводов для двигателей многократного запуска.

Газодинамическая система основана на использовании части кинетической энергии расширяющейся струи (5—6%) для нагрева специальной поверхности, контактирующей с компонентами топлива. При ее применении также усложняется конструкция головки камеры и требуется источник газа.

Жидкий кислород не обеспечивает воспламенения с большинством освоенных горючих, но триэтилалюминий, триэтилборан и их смеси с кислородом самовоспламеняются. Углеводородные горючие при обычных температурах не воспламеняются с азотно-кислотными окислителями и перекисью водорода.

Практически со всеми горючими только фтор и ряд его производных обеспечивают хорошее самовоспламенение однако высокая их активность приводят к существенному усложнению и удорожанию как стендовых комплексов, так и летных образцов ЛА.Учет конкретных эксплуатационных характеристик компонентов ЖРТ на ранних этапах проектирования ДУ позволяет обеспечить надежное функционирование системы подачи, а также хранение и транспортировку ЛА в заправленном состоянии.

Большинство топлив ракетных двигателей представляет собой токсичные, т. е. ядовитые отравляющие вещества.

Установлены предельно допустимые концентрации ядовитых веществ в воздухе рабочих помещений, которые даже при длительном (6—8 ч) и непрерывном воздействии не оказывают вредного влияния на здоровье работающих.

Сокращением срока пребывания в атмосфере, зараженной ядовитыми газами или парами компонентов топлива, предельная допустимая концентрация может быть несколько повышена, так, например, для окиси углерода СО, если время пребывания не более одного часа разрешается до 0,05 мг/м3 воздуха, а для времени пребывания в 15—20 мин может достигать даже 0,2 мг/м3. Однако надо иметь в виду, что ряд веществ с особенно высокой токсичностью, таких как фтор, окислы азота, производные фтора и хлора, не допускает даже незначительных отклонений от установленных норм.

Степень токсичности различных веществ различна и обычно оценивается так называемой допустимой концентрацией ядовитого вещества в воздухе (мг/л). Иногда степень токсичности сравнивается по так называемой летальной дозе (LD50) это такое количество ядовитого вещества в миллиграммах на 1 кг веса живого организма, которое будучи введено в организм приводит к 50 % -ной смертности подопытных животных.

Важным экономическим фактором при создании и эксплуатации комплексов с ЖРДУ является стоимость компонентов ЖРТ. Вклад стоимости компонентов в суммарную стоимость технической системы возрастает с увеличением габаритных размеров ЛА и их количества в серии.

 

Экономические требования. При массовом использовании ЛА с ЖРДУ, а также ЛА с ЖРДУ многократного использования возрастает роль экономического фактора. Производство новых высокоэффективных ракетных топлив невозможно без подготовки и развития сырьевой и производственной базы. При этом стоимость производимых компонентов должна быть достаточно низкой.

Выполнить все требования, предъявляемые к ЖРТ и сформулированные в настоящем разделе, практически невозможно. Более того, одна группа требований часто противоречит другой. Поэтому выбор компонентов топлива должен определяться в основном теми задачами, которые выполняет ЛА.

Перспективные ЖРТ

 

Вслед за освоением и широким применением одного из наиболее эффективных топлив — кислородно-водородного — стали осваи­вать топлива с использованием наиболее активного окислителя — жидкого фтора и его соединений. Применение этих окислителей для двигателей нижних ступеней ракет сдерживается высокой токсичностью фтора и его продуктов сгорания. Поэтому возмож­ной областью использования фторных топлив являются верхние ступени ракет и космические аппараты, для которых исключи­тельно важны высокие энергетические характеристики. Для межпланетных косми­ческих аппаратов ведется разработка многофункциональных дви­гателей на фторгидразиновом топливе. При малых уровнях тяг (для коррекции траектории полета) используется режим работы двигателя на однокомпонентном гидразиновом топливе. Для обеспечения высо­ких уровней тяг (торможение космического аппарата, увеличение скорости полета и т. д.) используется режим работы на двухкомпонептном топливе (впрыск фтора в поток про­дуктов разложения гидразина). Дальнейшей перспективой по применению более эффективных топлив может явиться освоение и внедрение металлосодержащих топлив. Для двигательных установок боевых ракет имеется сущест­венное ограничение круга возможных топлив—они должны допускать длительное хранение ракет в заправленном состоянии. При этом необходимо сочетать высокий удельный импульс и боль­шую плотность топлива. Работы по созданию и освоению метал­лосодержащих топлив, типичным среди которых является гелированный гидразин с алюминиевым порошком в качестве горючего и высококонцентрированная перекись водорода или четырех­окись азота в качестве окислителя, могут привести к существен­ному улучшению энергетических и массовых характеристик двигательных установок на высококипящих топливах.

Низкая плотность и низкая температура кипения жидкого водорода затрудняют его использование в ракетах для продолжи­тельных космических полетов. В связи с этим перспективным представляется применение шугообразного водорода. Содержание твердого водорода в двухфазной смеси может составлять около 50 %. Основные преимущества шугообразного водорода перед обычным — повышенная плотность и увеличенная хладоемкость, а, следовательно, увеличение времени хранения. Использование гелей шуги водорода может облегчить решение проблемы относительно длительного хранения жидкого водорода в космических условиях.

Значительное внимание уделяется криогенным углеводород­ным горючим, полученным на основе низкомолекулярных газо­образных углеводородов: метана СН4, этана С6Н6, пропана С3Н8 и др. Эти углеводороды доступны, могут храниться в условиях космического пространства, имеют низкую стоимость и сравнительно высокие значения удельного импульса при использовании в паре с жидким кислородом. Жидкий метан, например, является еще и хорошим охладителем, позволяет получать восстановитель­ный генераторный газ, не содержащий конденсата. Газообразный метан может быть нагрет в рубашке охлаждения ЖРД до 1000 К. Все это делает перспективным применение криогенных углеводо­родов (возможно в шугообразиом состоянии) для мощных мар­шевых двигателей ракет-носителей и для двигателей космических аппаратов с длительным пребыванием в космосе.

Так, например, следуя букве и духу концепции двигательных установок на экологически чи­стых и дешевых компонентах топлива, КБ химической автоматики им. С. А. Косберга (Воронеж) в инициативном порядке приступило к освое­нию топлива «жидкий кислород - сжиженный природный газ» («ЖК - СПГ»). Природ­ный газ на 98% по объему содержит метан и оценивается ведущими специалистами отрасли как топливо, наиболее полно удовлетворяющее требованиям к двигателям нового поколения.

При первом огневом испытании экспе­риментального двигателя на топливе ЖК-СПГ 30 апреля 1998 г. выполнены работы по про­верке работоспособности стендовых систем, отработке технологии заправки метаном, термостатирования ЖРД перед пуском, ис­следования характеристик запуска и выхо­да двигателя на основной режим.

Цели и задачи начального (демонстра­ционного) этапа освоения нового топлива выполнены. Полученные эксперименталь­ные данные и приобретенный опыт работ с СПГ позволяет перейти к проектированию и подготовке огневых испытаний ЖРД ново­го поколения.

По контрактам с Корпорацией КОМПО-МАШ и Центром им. М. В. Келдыша проведе­на расчетно-конструкторская, материаловедческая и технологическая проработка ряда новых двигателей.

Большое внимание уделяется улучшению свойств высококипя­щихуглеводородных горючих. Разрабатываются углеводородные горючие нефтяного происхождения и синтетические, с улучшен­ными физико-химическими свойствами, повышенной плотностью и т. п. В США создано углеводо­родное горючее RJ-5, имеющее плотность, существенно более высокую, чем керосин.

Среди исследуемых двухкомпонентных топлив, окислитель и горючее которых являются химически устойчивыми индивидуаль­ными веществами, топливо фтор + водород является наиболее эффективным из всех известных. Вместе с высоким удельным импульсом эти топливо имеет и сравнительно высокую плотность вследствие высокой плотности жидкого фтора и большого значе­ния оптимального соотношения компонентов. Несмотря на высокую токсичность и агрессивность фтора и продуктов сгора­ния, освоение этого топлива рассматривается как дальнейшее развитие и улучшение уже освоенного топлива О2 + Н2.

Комбинация F2,ж+N2H4 имеет сравнительно высокие значе­ния удельного импульса и плотности. Охлаждающие свойства гидразина позволяют преодолеть трудности теплозащиты, связан­ные с высокой температурой горения. Специальные добавки, не влияющие на энергетику, устраняют опасность разложения и взрыва гидразина при использовании его для регенеративного охлаждения.

Исследуемые высококипящие топлива сравнительно немного­численны. Согласно публикуемым материалам наиболее эффектив­ным по удельному импульсу является топливо на основе высоко­концентрированной перекиси водорода с пентабораном. Пентаборан чрез­вычайно токсичен и самовоспламеняется в воздухе. Однако най­дены присадки, устраняющие эту опасность (температура само­воспламенения повышается на 100 К). К недостаткам рассматрива­емого топлива относят высокую температуру плавления концентрированной перекиси водорода. В то же время стабильность Н2О2 достаточна для применения во многих случаях: чистые растворы концентрированнойН2О2 разлагаются со скоростью, меньшей 0,6% в год.

Топливо N2О4 + В5Н9 имеет существенно меньшее теоретиче­ское значение удельного импульса, но более высокую плотность и стабильность, оба его компонента пригодны для применения в системах с предварительной заправкой и герметизацией емкости.

Среди выосокоэнергетических горючих внимание при­влекают металлыBe, Li, A1 и их гидриды. При горении этих ме­таллов в кислороде и фторе на единицу массы продуктов сгорания (окислов и фторидов) выделяется больше теплоты, чем, например, при горении водорода. Кроме этого, указанные металлы имеют довольно высокую плотность. Со­гласно термодинамическим расчетам применение добавок легких металлов, главным образом Be, может обеспечить существенное повышение энергетических характеристик топлив.

Применение металлических добавок к топливу на основе жид­кого водорода снижает плотность топлива, что связано с умень­шением количества окислителя в топливе и увеличением количе­ства водорода при оптимальных соотношениях. Оптимальным соотношением всех компонентов является примерно такое, когда весь окислитель расходуется на стехиометрическое окисление металла, а водород добавляетсядо достижения максимального удельного импульса.

Аналогичные данные по­казывают возможности повышения характеристик некоторых вы­сококипящих топлив путем использования металлических добавок.

Для высококипящих топлив также характерно уменьшение оптимального количества окислителя при добавлении металла, однако из-за более высокой плотности горючих по сравнению с Н2,ж, добавление металла, более тяжелого,чем оба компонента, повышает плотность топлива.

Из гидридов металлов особый интерес представляетВеН2 и А1Н3.

Плотность этих веществ довольно высока и равна 0,63 и 1,48 г/см3 соответственно. Идеальный удельный импульс в пустоте топлива Н2О2 + BeH2 при оптимальном соотношении компонентов составляет 4800 м/с, т. е. близок к удельному импульсу топлива F2 + Н2. Это наиболее высокая характеристика для высококипящих топлив, горючее и окислитель которых являются индивидуаль­ными веществами.

Гелеобразные топлива исследуют в связи с решением задач создания хранимой однородной суспензии металлов в компонентах топлива, увеличения срока хранения криогенных компонентов топлив в условиях невесомости, улучшения эксплуатационных характеристик топлив (гелирование способствует быстрому затуханию колебаний в баке) и т. д. Создание новых гелеобразных топлив и комбинирование современных окислителей с гелеобразными горю­чими позволит существенно уменьшить размеры крупных ракет-носителей.

При получении гелеобразных топлив обычно используются химически актив­ные или механические гелеобразователи. В качестве химически активных гелеобразователей применяют высшие жирные кислоты и их соли (мыла), высокомо­лекулярные соединения (полимеры), тяжелые углеводороды. Механическими гелеобразователями могут служить тонкоизмельченные металлы (размером 0,8 ... 3 мкм) и их соединения, силикагель, сажа, глина и т.д.

Используя с загущенным органическими горючими наполнители, представляющие собой порошкообразный окислитель, и высокоэнергетические добавки, получают гелеобразные монотоплива. В загущенном состоянии моно­топлива похожи на твердые ракетные топлива, обладая, например, способ­ностью выдерживать большие перегрузки. В отличие от твердых ракетных топ­лив гелеобразные монотоплива могут прокачиваться по трубопроводам; их при­готовление можно организовать непосредственно на стартовой позиции, отра­ботка рецептур таких топлив происходит более быстрыми темпами и имеет более низкую стоимость, а возможности варьирования рецептуры гелеобразных составов гораздо шире, так как их не нужно отверждать.

Энергетические характеристики монотоплив весьма близки к характеристикам средних по удельному импульсу жидких ракетных топлив.

Псевдожидкое топливо (или его компонент) состоит из порошкооб­разных веществ, которые можно флюидизировать газом по методу кипящего слоя и подавать в камеру сгорания ракетного двигателя аналогично жидкому компоненту. При прохождении с некоторой скоростью потока газа, т. е. ожи-жающего агента, через слой сыпучего, зернистого вещества частицы этого ве­щества начинают интенсивно перемещаться относительно друг друга, напоминая при этом кипящую жидкость и приобретая некоторые ее свойства. Переход непо­движного слоя в кипящий происходит при такой скорости газа, когда гидроди­намическое давление потока уравновешивает силы, действующие на частицу: инер­ционные, силы тяжести и др.

В качестве псевдоожижаемого окислителя рассматриваются порошкообраз­ные перхлорат аммония, нитрат аммония, гексанитроэтан и др., а в качестве горю­чего—алюминий, бор, полиэтилен, гидриды алюминия, бериллия, циркония и др. Сжижающим агентом может быть нейтральный газообразный азот, а также активные сжижающие газы, например, для окислителя — кислород, а для горючего — водород.

В настоящее время работы в области псевдожидких и гелеобразных топлив находятся в стадии экспериментальных исследований и стендовых испытаний опытных образцов.

 



Дата добавления: 2016-06-29; просмотров: 2729;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.017 сек.