Глава 4. Общая характеристика энергосиловой установки. Взаимосвязь основных тактико-технических данных торпеды с ее энергосиловой установкой.


Основными тактико-техническими данными торпеды, определяющими эффективность ее боевого использования, являются скорость и дальность хода, скрытность, габариты, разрушительная сила и меткость. Последние два параметра определяются особенностями боевой части и систем наведения и управления.

Скорость, дальность, а также скрытность хода торпеды обеспечиваются ее энергосиловой установкой. Габариты и вес торпеды в значительной степени также определяются энергосиловой установкой.

Под энергосиловой установкой парогазовой торпеды, также как и под пропульсивным комплексом, понимается совокупность всех устройств, механизмов, агрегатов и приборов, обеспечивающих прохождение торпедой заданной дальности с определенной скоростью, и поддержание этих величин постоянными с необходимой точностью в соответствии с заданными требованиями.

Энергосиловая установка торпеды состоит в основном из следующих частей:

— баллонов или баков с энергокомпонентами и системы трубопроводов;

— средств подачи энергокомпонентов;

— парогазогенератора;

— двигателя;

— регулирующих и управляющих приборов различного рода – пускорегулирующей аппаратуры.

Для каждого конкретного типа энергосиловой установки в зависимости от видов источника энергии конструктивное оформление указанных составных элементов может быть различным.

Принципиальная схема энергосиловой установки торпеды с движителем типа гребных винтов приведена на рис. 6.

 

Рис. 6. Структурная схема энергосиловой установки парогазовой торпеды

 

Система подачи (СП) обеспечивает подачу энергокомпонентов (горючего, окислителя, воды) в парогазогенератор (ПГГ) в определенном количестве и соотношении.

В ПГГ происходит образование рабочего тела двигателя — парогазовой смеси с заданными параметрами, определяющими ее работоспособность.

В двигателе (Дв) происходит превращение тепловой энергии парогазовой смеси в механическую энергию вращения гребных винтов (ГВ), а тяга, создаваемая последними, обеспечивает движение торпеды (Т) с определенной скоростью на заданной дальности.

Регуляторы (Р) осуществляют управление процессами в энергосиловой установке по тем или иным законам, а система выхлопа (СВ) обеспечивает выброс отработанного парогаза за борт.

Для установления связи между основными тактико-техническими данными торпеды и параметрами энергосиловой установки парогазовых торпед воспользуемся общеизвестными соотношениями. Требуемая мощность любого двигателя, необходимая для получения заданной скорости хода торпеды, определяется по формуле

(4.1)

где Rx— лобовое сопротивление воды движению торпеды, н;

V — скорость хода торпеды, м/сек;

ηв — пропульсивный к. п. д. гребных винтов;

Схкоэффициент лобового сопротивления;

ρ — плотность воды, кг/м3;

Ω — смоченная поверхность торпеды, м2;

С другой стороны, располагаемая мощность теплового двигателя, т. е. мощность, которую может развивать уже выполненный двигатель, равна

(4.2)

где mcек— секундный расход парогазовой смеси, кг/сек;

L0запас тепловой энергии в одном килограмме парогазовой смеси, дж/кг;

ηэ— эффективный кпд двигателя, показывающий, какая часть располагаемой энергии парогазовой смеси полезно преобразуется в механическую энергию вращения гребных винтов или кинетическую энергию рабочего тела.

Приравняем выражения (4.1) и (4.2) и умножим обе части равенства на τ — время хода торпеды. Тогда, учитывая дальность хода торпеды

(4.3)

и общий запас энергокомпонентов в торпеде

(4.4)

а смоченная поверхность торпеды примерно равна поверхности цилиндра диаметром, равным калибру торпеды Dт и длиной торпеды LT, будем иметь

(4.5)

На основании последнего равенства можно сделать ряд выводов.

Во-первых, одной из наиболее прямых и очевидных является зависимость между скоростью и дальностью хода торпеды. Эта зависимость базируется главным образом на энергетических началах: чем больше скорость хода торпеды, тем больше лобовое сопротивление и тем больше мощность двигателя; чем больше дальность хода, тем больше время работы двигателя.

Во-вторых, скорость торпеды вместе с гидродинамическими характеристиками и заданной дальностью хода определяет необходимое количество энергии. Общее количество энергии с учетом кпд установки определяет необходимые запасы энергокомпонентов. Эти запасы в свою очередь определяют размеры отсеков под энергокомпоненты а, следовательно, и габариты торпеды.

В-третьих, дальность хода торпеды, как видно из равенства (4.5), при прочих равных условиях обратно пропорциональна квадрату скорости ее хода. Поэтому всегда следует иметь в виду, что стремление повысить скорость торпеды неизбежно повлечет за собой существенное уменьшение дальности хода торпеды.

Вопрос выбора правильного соотношения между скоростью и дальностью хода торпеды имеет важное значение и должен решаться на основе правильного сочетания тактических требований и технических возможностей реализации этих требований в конкретных образцах.

Скорость и дальность хода торпеды, как это следует из равенства (4.5), прямо пропорциональны запасам энергокомпонентов. Спецификой работы силовых установок торпед является то, что для получения парогазовой смеси заданной температуры предусматривается ввод воды. Поэтому наряду с горючим и окислителем воду также считают одним из энергокомпонентов.

Следовательно, для получения больших величин скорости или дальности хода в ограниченном объеме торпеды желательно разместить возможно большее количество горючего mг, окислителя mок и воды mв (впрочем, воду можно отбирать из ОС):

(4.6)

С этой точки зрения энергокомпоненты должны иметь возможно большую плотность.

В большинстве торпед периода второй мировой войны в качестве окислителя применялся сжатый атмосферный воздух. Из-за высоких давлений на один килограмм хранимого воздуха приходилось по 3—4 кг массы резервуаров. Небольшой запас сжатого воздуха значительно снижает тактические характеристики торпед: дальность хода их при скорости 44—50 уз не превышала 4000—6000 м. В современных условиях это неприемлимо.

Дальность и скорость хода торпед зависят не только от количества, но и от качества энергокомпонентов. Поэтому для получения больших скоростей и дальностей хода следует применять высококалорийные топлива.

Скорость и дальность хода торпеды зависят также от эффективности двигателей и гребных винтов. В настоящее время в торпедах применяются силовые установки трех типов: парогазовые, электрические и реактивные.




Дата добавления: 2016-06-29; просмотров: 2225;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.