Жидкие взрывчатые вещества.


В жидком веществе практически осуществляется тот же процесс локальных микровзрывов, что и в твердом веществе. Специфическим является то, что резкими колебаниями и сбросом давления, разгоном и растяжением жидкости создают нарушения ее сплошности. Проявляется это в возникновении и схлопывании пузырьков – режима, называемого кавитацией. Кавитация как режим предкипения жидкости возникает при соответствии температуры и давления параметрам насыщенного пара. Рост пузырька происходит постепенно, с затратой небольшой мощности. В то же время, схлопывание пузырька происходит почти мгновенно с выделением всей накопленной энергии в микроскопической зоне его расположения. Поэтому температура и давление возрастают на несколько порядков, что приводит к микровзрыву. Максимальные значения параметров: давление 1,46∙1023 атмосферы, температура 8,56∙107 К. А дальше все так же, как в твердом веществе: локальная газификация, распад молекул на атомы с освобождением электронов связи, инициация электронами – генераторами распада атомов на элементарные частицы с выделением энергии их связи в этих атомах; детонационная и ударная волны.

Процесс извлечения «избыточной» мощности на основе частичного атомного распада воды получен в теплогенераторах разного типа и описан в /1/. Нет препятствий для использования воды в качестве взрывчатого вещества. При этом, вследствие частичного распада и сохранения химических свойств, атомы вещества рекомбинируют в продукты реакции, образуя снова воду. Ввиду незначительного дефекта массы молекул воды он восстанавливается в природных условиях, чем обеспечивается экология, в том числе, отсутствие радиации.

10.4.3. Газообразные взрывчатые вещества
и объемно-детонирующие смеси.

Известно, что при наличии в атмосферном воздухе горючих газов, жидкостей в виде аэрозолей и твердых веществ в виде пыли, может произойти взрыв. Экспериментальные исследования дают некоторую картину концентраций, приводящих к взрыву (см. таблицу 10.2.) /48/.

В газообразном веществе, в том числе, в объемно-детонирующих смесях (ОДС), происходит каскадная инициация взрыва. На первом такте каким-либо образом, например, при аварии трубопровода или в результате взрыва распыляется в воздухе топливо (жидкое, твердое или газообразное). На втором такте, в распыленное в воздухе топливо, как газообразное ВВ в виде полусферического облака подрывается вторым инициирующим воздействием (искра, удар, взрыв, ЭМИ,...).

В газообразном веществе, в том числе, в объемно-детонирующих смесях (ОДС), происходит каскадная инициация взрыва. На первом такте каким-либо образом, например, при аварии трубопровода или в результате взрыва распыляется в воздухе топливо (жидкое, твердое или газообразное). На втором такте, в распыленное в воздухе топливо, как газообразное ВВ в виде полусферического облака подрывается вторым инициирующим воздействием (искра, удар, взрыв, ЭМИ,...).

 

 

Таблица 10.2.

  Вещество Мах плот-ность, при которой возможен взрыв, г/м3 Мin температура зажигания, °С Мах давление, МПа Мах скорость роста давления, МПа/с
1. Алюминий * (стружка) 0,88
2. Стеарат кальция 0,67
3. Целлюлоза 0,81 55,2
4. Уголь 0,62 15,9
5. Кофе (быстрорастворимый) 0,44 3,8
6. Пробка 0,67 51,8
7. Эпоксидный клей 0,54 90,2
8. Мука 0,71 14,1
9. Железо 0,33 14,5
10. Магний 0,80 103,5
11. Нейлон 0,66 27,6
12. Мыло 0,54 19,4
13. Сера 0,54 32,4
14. Титан 0,59 75,9
15. Пшеничная мука 0,76 25,6
16. Пшеничный крахмал 0,69 44,9
17. Древесина нет данных 0,62 39,3

 

* Это добавка всего 1 % электронов на 1 м3 воздуха.

Механизм взрыва газообразного ВВ такой же как твердого и жидкого ВВ, аналогичный описанному механизму горения топлива, если энергии возбуждения взрыва достаточно для распада не только молекул кислорода, но и азота, последний так же участвует во взрыве не как балласт, а как равноправный реагент. В газовом облаке взрыв начинается с дефлаграционного горения. Фронт горения, распространяясь сферически, разгоняется за счет самообеспечения энергией до скорости порядка 2 км/с, как правило, не превышающей скорости свободного движения молекул в газе. И тогда возникает детонационное горение и детонационная волна. В облаке диаметром менее 5 м фронт горения не успевает разогнаться до нужной скорости и детонация – взрыв не происходит, но облако выжигается: на этом основан один из методов защиты.

Усиление параметров плазмы для осуществления распада азота может быть достигнуто за счет увеличения энергоподвода во фронте взрыва добавками более энергичного топлива и взрывчатого вещества. Именно этим можно объяснить повышение параметров взрыва обычной ОДС с 2 до 40 МПа. Добавки дают локальные микрозоны плазмы с высокими параметрами, достаточными для разрушения молекул азота на атомы и их участие в процессе энерговыделения при взрыве. При этом собственных электронов связи достаточно для частичного распада азота и кислорода воздуха с повышенным энерговыделением, но без радиации. В качестве продуктов взрыва азота воздуха образуются преимущественно водяной пар, а также – мелкодисперсный графит; если не весь азот прореагировал, то – его остатки и углекислый газ. При избытке электронов в облаке ОДС за счет какого-либо постороннего источника азот и кислород воздуха будут испытывать более полный распад на элементарные частицы с выделением существенно большей (на несколько порядков) энергии взрыва.

Ядерный взрыв.

Рассмотрим ФПВР урана /2/. Почему уран – 238 не пригоден для ядерного горючего? Традиционный ответ: «потому что коэффициент размножения меньше единицы не обеспечивает реакцию выделения» – не объясняет физическую причину этого.

Превращение урана – 238 в уран – 235 происходит в результате частичного

ФПВР: U238 → U235 + Зnе +3пэ, где nе, nэ – число электронов и электрино в одном нуклоне (нейтроне) атома, в частности, урана. Отсюда следует, что три нуклона атома урана – 238 подверглись полному расщеплению электроном – генератором, в роли которого выступает свободный электрон. Электрон – генератор работает в кристаллической структуре урана, взаимодействуя с четырьмя атомами ближайшего окружения и находясь в их межатомном пространстве. Электрино в количестве Зпэ штук покидают место события со скоростью 1014...1016 м/с в виде γ – излучения, производя попутно частичное разрушение атомов. Такой ФПВР, охвативший четыре атома, расщепил 4 × 3 = 12 нейтронов с высвобождением 12 × nе = 36 свободных электронов.

Часть высвобождаемых электронов уходит в пространство вместе с γ –излучением, остальная (большая) часть захватывается положительными электрическими полями атомов вещества. Теперь уже уран – 235 отличается от урана – 238 не только атомной массой, но и наличием избыточных свободных неструктурных электронов, имеющих сравнительно слабое механическое крепление с атомами ввиду дебаланса электрических зарядов. Такой атом, образно говоря, находится на взводе: достаточно малейшего внешнего воздействия на него, чтобы один из его свободных электронов сорвался в межатомное пространство и начал новый акт ФПВР.

Теперь для начала ядерной реакции уран – 235 нужно скомпоновать в виде сферы критического диаметра и массы. В результате ФПВР в зоне реакции – геометрическом центре сферы формируется полость «выгоревшего» топлива. По мере развития реакции генерируемое γ – излучение беспрепятственно покидает не только пределы полости ядерного заряда, но и пределы объема тары ввиду прозрачности для него стенок корпуса. Число электронов возрастает в геометрической прогрессии, поскольку в этот период каждый электрон, реагируя с одним нейтроном, освобождает три структурных электрона, то есть коэффициент размножения равен трем, что достаточно для поддержания ФПВР. Высвобождающиеся электроны не в состоянии все покинуть полость заряда. Силы взаимного отталкивания электронов столь высоки, что возникает колоссальное давление (4,07∙1011 атм.), которое разрывает заряд и тару, и электроны вырываются наружу, расщепляя азот и кислород атмосферного воздуха. В этом случае, при избытке электронов, воздух становится дополнительным ядерным взрывчатым веществом, часть которого претерпевает полный распад на элементарные частицы, сопровождаемый всеми видами излучений (α, β, γ и нейтронного).

Только частичный распад воздуха в естественных условиях, без избытка электронов в плазме, позволяет избежать радиации и иметь нерадиоактивные продукты горения, в том числе, взрыва, как быстрого горения, например, в цилиндрах ДВС.

Следует отметить, что выгорает только 23% ядерного топлива, а остальная часть заряда разрывается на кусочки и впрессовывается в корпус. Происходит это потому, что в ФПВР участвуют только те электроны, которые находятся в контакте со стенкой полости заряда. Все остальные – отлучены от своего прямого назначения, так как им уже нечего расщеплять. Кристаллическая структура мешает ядерной реакции с достаточной скоростью распространяться от центра заряда в радиальном направлении, чтобы беспрерывно подключались к работе новые свободные электроны. За пределами выгоревшей полости для продолжения распада урана вещество должно находиться в жидком или газообразном состоянии. Этому условию отвечает, в частности, водородная бомба, а также облако объемно-детонирующей смеси.



Дата добавления: 2016-06-29; просмотров: 5265;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.