Конструкция спиральных компрессоров


 

 

 

Рис. 2. 26. Спиральный компрессор Performer (Danfoss). 1 – подвижная спираль; 2 – неподвижная спираль; 3 - клеммная коробка ; 4 – защита электродвигателя; 5 – смотровое стекло; 6 – всасывание; 7 – масляный насос; 8 - электродвигатель; 9 – нагнетание; 10 – защита от обратного вращения; 11 – обратный клапан.

 

Электродвигатель находится в нижней части компрессора, вал при помощи эксцентрика обеспечивает эллипсовидное движение подвижной спирали, вставленной в неподвижную спираль, установленную в верхней части компрессора. Всасываемый газ поступает в компрессор через патрубок всасывания, обтекает ко­жух электродвигателя и входит в не­го через отверстия в нижней части кожуха (рис.2.26). Масло, находящееся в парах хладагента, в результате поворота маслохладоновой смеси под действием центробежных сил отделяется из него и стекает на дно картера компрессора. Пар проходит через электродвигатель, обеспечи­вая полное охлаждение компрессора во всех режимах работы. Пройдя че­рез электродвигатель, пар попадает в спиральные элементы компрессора, которые расположены в верхней части компрессора над электродвигателем. Рабочий цикл совершается за три оборота вала: первый оборот - всасывание, второй оборот – сжатие, третий оборот – нагнетание. Сразу над выходным каналом непод­вижной спирали находится обратный клапан. Он предохраняет компрессор от обратного течения газа после его выключения. Пройдя обратный кла­пан, газ уходит из компрессора через патрубок нагнетания.

Эффективность спиральных компрессоров во многом определяет­ся величиной внутренних радиальных и осевых утечек газа в процессе сжатия. Радиальные утечки происходят между со­прикасающимися боковыми поверхностями спиралей, осе­вые — между верхним торцом одной спирали и опорной пли­той другой (рис. 2. 24). Утечки ведут к увеличению потребляемой мощности компрессора, снижению его холодопроизводительности и эффективности работы.

Основное отличие этого компрессора от других спиральных заключается в принципе уплотнения спиральных элементов. Распространенный способ обеспечения радиального уплотнения заключается в создании плотного контакта от надавливания подвижной спирали на неподвижную под действием центробежной силы. Однако только что изготов­ленные компрессоры создают эффективное одно­родное уплотнение только после периода «притирки», в процессе которого между по­верхностями образуется необходимый контакт. Касание боко­вых поверхностей спиралей является обязательным условием для таких компрессоров.

Компания Danfoss в компрессорах марки Performer исполь­зует так называемый «принцип контролируемого вращения» (controlled orbiting), что подразумевает движение спиралей по фиксированной траектории без соприкосновения подвижной и неподвижной спиралей при любых условиях эксплуатации компрессора.

Компрессоры Performer с контролируемым вращением для получения гарантированного уплотнения должны иметь спира­ли сверхточного профиля. Боковые поверхности таких спи­ралей никогда не соприкасаются друг с другом, а тонкая пленка масла, уплотняющая зазор, обеспечивает смазку спиралей без трения и износа их поверхности.

При создании осевого уплотнениянекоторые изготовители ком­прессоров для уплотнения прижимают подвижную спираль к неподвижной, используя давление сжимаемого газа.

В компрессорах Performer динамический контакт между верх­ним торцом подвижной спирали и опорной плитой неподвижной спирали поддерживается с помощью плавающего уплотнения (рис.2.27).

 

 

Рис. 2.27 . Плавающее уплотнение спирального компрессора Performer с контролируемым вращением:

1 опорная плита; 2 зазор между торцом и опорной плитой; 3плавающее уплотнение; 4 спираль; 5 масляная пленка, предотвращающая утечки газа уплотнения; 6 газ высокого давления

 

Этот уплотняющий элемент находится в канавке, прорезанной в верхнем торце подвижной спирали (рис. 2.27). Газ под давлени­ем давит на плавающее уплотнение снизу и заставляет его при­жиматься к опорной плите спирали, создавая динамический кон­такт при работе компрессора. Прижимающие силы очень малы, что в сочетании с небольшой площадью контакта снижает тре­ние и увеличивает эффективность работы компрессора.

Характерной особенностью этих компрессоров является их запуск вхолостую, даже при несбалансированном давлении в системе. Это происходит за счет установки обратного клапана на линии нагнетания, закрывающемся при его остановке. В этих условиях в картер возвращается только газ, сжатый в компрессоре до места установки клапана, проходя при этом через спирали. Тем самым осуществляется выравнивание внутреннего давления . При остановке компрессора две спирали размыкаются как по вертикали, так и по горизонтали. При новом запуске компрессор не испытывает нагрузки, поскольку возрастание давления происходит постепенно.В спиральном компрессоре предусмотрен предохранительный клапан, открывающийся при превышении давления свыше 28 бар и перепускающий хладагент из нагнетательной полости во всасывающую.

Масло в спиральных компрессорах служит только для смазки подшипников и плавающего уплотнительного кольца. Смазка спиралей не требуется ввиду малой скорости вращения и силы трения в каждой точке контакта. Содержания масла в маслохладоновой смеси вполне достаточно, чтобы обеспечить необходимую смазку, ввиду чего масло не подвергается воздействию высоких температур, которые могут привести со временем к ухудшению характеристик масла. Другой положительной чертой является высокая способность противодействия уносу масла при пуске.

 

Вопросы для самоконтроля по главе 2.

В чем отличие прямоточных и непрямо­точных компрессоров? 2. Какое конструктив­ное отличие компрессора простого действия от компрессора двойного действия? 3. Ка­кое устройство для защиты от гидравличе­ского удара имеется в компрессоре? 4. Чем отличается поршневое уплотнительное коль­цо от маслосъемного? 5. Как смазывается сальник компрессора? 6. Каково назначение предохранительного клапана в компрессоре? 7. Каким образом масло, уносимое парами хладагента, возвращается в картер компрес­сора? 8. Почему компрессор, работающий на аммиаке, имеет большую холодопроизводительность, чем при работе на R22? 9. Каким образом можно изменить холодопроизводительность холодильного компрес­сора? 10. Как происходит сжатие в винто­вом компрессоре? 11. Почему в винтовом ком­прессоре возникают энергетические потери, когда давление в конце сжатия не совпадает с давлением нагнетания? 12. Почему при перемещении золотника холодопроизводительность винтового компрессора изменяется? 13. Какие достоинства и недостатки имеет винтовой компрессор по сравнению с порш­невым? 14. В чем преимущества спиральных компрессоров? 15. Уплотения спиральных компрессоров. 16. Принцип работы спиральных компрессоров. 17. Что такое «защемленный» объем в винтовых компрессорах?

 

Литература по главе 2.

1.Бараненко А.В., Бухарин Н.Н., Пекарев В.И., Тимофеевский Л.С. Холодильные машины – СПб: Политехника, 2006.-944 с.

 

2. Быстрый выбор автоматических регуляторов, компрессоров и компрессорно-конденсаторных агрегатов. Каталог. Danfoss. 2009.-234с

3. Ладин Н.В., Абдульманов Х.А., Лалаев Г.Г. Судовые рефрижераторные установки. Учебник. Москва, Транспорт, 1993.-246 с.

4. Швецов Г. М., Ладин Н. В. Судовые холодильные установки: Учебник для
вузов. - М.: Транспорт, 1986. - 232 с.

 

 



Дата добавления: 2016-06-29; просмотров: 3905;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.