ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Под интегральной схемой (ИС) понимается электрон­ное устройство, имеющее высокую плотность компонов­ки элементов электрической схемы, в котором все или часть элементов сформированы и электрически соеди­нены между собой на одном полупроводниковом кри­сталле или диэлектрической подложке.

ИС представляет собой многокомпонентное тело из слоевых композиций на поверхности или в приповерх­ностном слое твердого тела (полупроводника). Ее харак­теристики определяются свойствами тонких слоев раз­личных материалов, которые в свою очередь во многом зависят от условий их формирования, последовательно­сти и вида технологических операций.

Вопросы разработки и производства ИС рассматри­ваются в новой отрасли науки и техники -микро­электронике, изучающей технологические, физиче­ские конструктивные особенности электро- и радиоэле­ментов с размерами не более 1 мкм хотя бы по одной координате.

Наиболее важной проблемой при создании микросхем является разработка элементов и совместимых друг с дру­гом материалов со стабильными и воспроизводимыми характеристиками тонких слоев, а также последователь­ности технологических операций формирования много­слойной структуры, при которой последующие операции не оказывают вредного влияния на характеристики ранее сформированных слоев.

В зависимости от способа создания пленочных компо­зиций микросхемы делятся на два класса — гибридные интегральные схемы (ГИС) и полупроводниковые инте­гральные схемы (ИС).

Гибридная интегральная схема — микро­миниатюрное электронное устройство, элементы которо­го нераздельно связаны конструктивно, технологически и электрически на поверхности диэлектрической (стеклян­ной, керамической) подложки. В технологии ГИС пас­сивные элементы (резисторы, проводники, контактные площадки, конденсаторы, диэлектрические и изоля­ционные слои) изготовляют в одном технологическом цикле в виде металлических и диэлектрических пленок на поверхности подложки. Активные компоненты (диоды, транзисторы), а при необходимости также микроминиа­тюрные дискретные пассивные компоненты (конденса­торы, катушки индуктивности и т. п.) монтируются на поверхности подложки и соединяются с другими элемен­тами.

В зависимости от технологического процесса фор­мирования пассивных элементов гибридные схемы

юдразделяются на тонкопленочные и толстопленоч­ные.

Гонкопленочная технология — последовательное нане­сение на общее основание тонких (менее 1-2 мкм) пле­ночных проводников, контактов, резисторов, изоляторов армированием микрогеометрии элементов и их соединений (топологический рисунок) или в процессе осаждения с помощью трафаретов (масок), а также с помощью вного локального травления сплошных слоев материалов.

Последовательность технологических операций при изготовлении тонкопленочных ГИС по двум вариантам приведена на рис. 19.1.

Толстопленочная технология — последовательное на­несение через сетчатые трафареты и вжигание в керами­ческие подложки паст резистивного, проводящего и диэ­лектрического назначения.

Проводящие и резистивные пасты представляют со­бой смесь мелкодисперсного металлического порошка, стекла, выполняющего роль постоянного связующего, и органических жидкостей, обеспечивающих вязкость смеси. Металл обеспечивает образование проводящих (серебро, золото, платина, палладий и их сплавы) или ре-зистивных (благородные металлы и их композиции с ок­сидами) дорожек.

Пасты для изоляционных слоев представляют собой смесь стекла и органических жидкостей.

Сетчатые трафареты имеют очень малый размер ячеек (порядка 50 мкм). В соответствии с необходимой топологией схемы на некоторых участках трафарета ячейки заполняются эмульсией, пигментной бумагой или фоторезистом, предохраняющими подложку от попада­ния пасты на эти участки. Нанесение пасты производится перемещающимся ракилем. Вначале наносится проводя­щая паста для создания соединительных порошков, об­кладок конденсаторов, контактных площадок. Паста вы­сушивается, а затем вжигается при температуре 750- 950 °С. Затем через другой трафарет наносится резистивная паста, которая вжигается при меньшей темпера­туре Аналогично наносится и вжигается диэлектрическая паста для образования диэлектрического слоя в толсто­пленочных конденсаторах и в местах пересечения провод­ников.

После формирования топологии последовательность других технологических операций аналогична процессам изготовления тонкопленочных схем.

Полупроводниковые (твердотельные) инте­гральные схемы получают путем целенаправ­ленного локального изменения свойств материала полу­проводниковой подложки, легированной примесью.

Добавлением примесей в строго определенных местах и количествах можно изменять проводящие характери­стики в материале подложки из полупроводников крем­ния и германия в очень широком диапазоне — практиче­ски от проводника до изолятора. Это свойство исполь­зуется для получения в кристаллах как активных, так и пассивных элементов. Изменение свойств происходит лишь в небольшом слое кристалла, равном нескольким микрометрам и называемом р—n-переходом, где смы­каются две зоны с различной проводимостью — дыроч­ной и электронной. Остановимся на этом подробно.

Химические элементы кремний и германий имеют на внешней электронной оболочке четыре электрона, т. е. их валентность равна четырем. Известно, что атом имеет более устойчивое состояние, когда на его внешней обо­лочке находится восемь электронов. При низких темпера­турах в кристаллах полупроводника все электроны свя­заны с атомами (подвижных электронов нет), и кристалл представляет собой изолятор.

При повышении температуры полупроводника от­дельные электроны отрываются от атомов, становятся подвижными и могут создавать электрический ток в кри­сталле, когда к нему прикладывается напряжение. При удалении электрона из атома в оболочке атома образует­ся свободное место-дырка. Свободные электроны дырки беспорядочно перемещаются по кристаллу.

При включении такого кристалла в электрическую цепь наблюдается упорядоченное движение электронов от отрицательного полюса к положительному. При стрече свободного электрона с дыркой они рекомбинируют и их движение прекращается. Такая проводимость назыется собственной проводимостью полупроводника.

Если в кристалл кремния или германия ввести не­большое количество, например, алюминия, то проводи­мость легированного им кристалла будет, в основном, дырочной. Такой кристалл называется полупроводником р-типа.

При введении в кремний и германий, например, мы­шьяка, получим полупроводник с электронной проводи­мостью, называемый полупроводником р-типа.

В кристалле полупроводника можно создать с по­мощью локального легирования одновременно две зоны: p-типа и n-типа. Границу между ними называют р — п-переходом, который может выполнять функции диода.

Создавая разнообразные комбинации р— n-переходов получают элементы — диоды, транзисторы, резисторы и т. п. Сочетания любого числа элементов образуют же­лаемую схему, а так как все они являются составными частями одного кристалла полупроводникового материа­ла, то получается полностью монолитная твердотельная структура.

Базовой технологией создания полупроводниковых ИС является эпитаксиалъно-планарная технология, по ко­торой поверхность полупроводниковой монокристалли­ческой пластины вначале окисляют. Затем осуществляют локальное травление оксида слоя и через вскрытые в нем окна производят легирование полупроводника. Легирую­щие примеси диффундируют в подложку из газовой фазы при высокой температуре. Последующим окислением ок­на снова закрываются. Повторяя технологические опера­ции окисления, селективного травления и диффузии раз­личных примесей, можно реализовать различные схемные элементы: диоды, транзисторы, сопротивления и емкости. Однако емкостные элементы в связи с их большой площадью и высокой стоимостью технологиче­ских операций в ИС практически не применяют. На одной пластине монокристалла полупроводника диаме­тром около 100 мм формируется одновременно до не­скольких тысяч ИС.

Последующими операциями технологического про­цесса являются: получение вакуумным напылением или фотолитографией металлических проводников, которые соединяют элементы схемы, и контактных площадок, от­браковка пластин по параметрам отдельных ИС, разрез­ка пластины на отдельные ИС, монтаж ИС в корпусе, со­единение контактных площадок с выводами корпуса, герметизация.

Выбор конструкции и технологии изготовления инте­гральных схем обусловливается технико-экономическими соображениями. Толсто- и тонкопленочная технологии отличаются широкими возможностями реализации схем по точности элементов. Кроме того, они характеризуют­ся сравнительно низкой стоимостью подготовки про­изводства. На их базе можно изготовлять широкую но­менклатуру схем малых серий (специальных ГИС).

Преимущественное использование тонкопленочной технологии в производстве прецизионных схем объяс­няется возможностью достижения более высокой разре­шающей способности, точности и стабильности элемен­тов схем.

Толстопленочная технология отличается несколько меньшим циклом подготовки производства и менее сложным технологическим оборудованием. Она исполь­зуется для получения сравнительно несложных схем в устройствах числового программного управления, ЭВМ и др. Для получения ГИС толстопленочная техно­логия в ряде случаев обладает преимуществами по срав­нению с тонкопленочной.

Технологию полупроводниковых ИС применяют для изготовления изделий массового производства — ци­фровых схем ЭВМ, микропроцессоров, электронных ча­сов, счетных машин и т. п.

Ряд технологических операций трех основных видов технологии изготовления интегральных микросхем по своей физической природе аналогичен, несмотря на раз­личия используемых материалов и оборудования.






Дата добавления: 2016-06-22; просмотров: 20922; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.026 сек.